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Abstract

Even when every member of a group shares the same goal, collective action can prove
surprisingly elusive. We investigate this challenge using a controlled laboratory exper-
iment in which high school and undergraduate students are placed in networks and
asked to complete a coordination task. Each participant privately receives a noisy
signal (60% accuracy) indicating which of two options is correct, and can observe the
real-time choices of a limited set of neighbors. We systematically varied network size,
number of neighbors, and signal distribution to evaluate their impact on group per-
formance. Consensus on the correct action declined in larger networks, in networks
with fewer connections, and in networks with an asymmetric distribution of signals.
Undergraduate students achieved collective coordination more frequently than high
schoolers, consistent with their greater willingness and ability to explore. These find-
ings underscore how even well-intentioned communities can fail to implement collective
actions due to local and imperfect transmission of information, highlighting the impor-
tance of network structure and individual traits for being successful. The results have
implications for understanding coordination failures in a variety of contexts, ranging
from team projects to public goods.
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1 Introduction

Consensus building is typically challenging because individuals frequently have different

objectives or diverging views on how best to achieve shared objectives. Classic examples

include government intervention vs. laissez-faire, nationalism vs. globalism, gun control

vs. gun rights, road building vs. public transportation, and strict drug enforcement vs.

legalization. Yet, disagreement over objectives is not the only barrier to collective action.

Even when individuals share common interests, coordination can fail due to informational

frictions. In this paper, we argue that multi-person coordination among individuals with

common interests may fail if information is noisy and exchanged only locally. This may

explain why substantial portions of the population hold inaccurate beliefs, such as the

idea that cell phone radiation significantly increases cancer risk, vaccines cause autism, or

climate change is not real.

To test this hypothesis, we design a controlled laboratory experiment in a social net-

work setting [12, 14, 15], using populations of high school and undergraduate students.

Our experiment combines and extends insights from the literatures on collective action

and social learning. The study of collective action has been central in the social computer

science literature. The pioneering experimental work by Kearns and colleagues demon-

strates that individuals, while observing the actions of only a limited set of neighbors, can

solve computationally complex global problems, such as graph coloring [17] and consensus-

building [16], among other tasks. In parallel, social learning has been extensively studied

in economics. It refers to the process by which individuals, each possessing private but

imperfect information about the state of the world, use the observed behavior of their

peers to infer additional information and adjust their own decisions accordingly [2]. Ex-

perimental research has shown that informational cascades — where individuals rationally

ignore their private signal to follow the observed choices of others — occur naturally [1, 4],

but also break easily [9]. More recently, social learning has been studied in network en-

vironments, where the structure of connections plays a critical role in determining how

information spreads and aggregates [6, 11]).

Unlike the collective action literature, we study a setting with an objectively correct

state of the world (e.g., the polio vaccine does not cause autism), where each individ-

ual receives a private signal about that state. While the majority of participants receive

correct information (for example, through medical professionals), some are exposed to

misinformation (e.g., through social media or pseudo-science). Success, however, requires

coordination on the correct action — such as vaccinating. Unlike the social learning lit-

erature, where individuals typically aim to make the correct decision for themselves, our

setting features network-dependent payoffs: an individual benefits only if the entire pop-
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ulation — or a large majority — chooses the correct action (as is the case with herd

immunity in vaccination campaigns). Moreover, participants engage in “cheap-talk” com-

munication: they choose tentative actions that are visible to their neighbors but can be

revised over time. This feature also distinguishes our design from the experimental re-

peated game literature [7] and from social learning in networks [11], where actions both

reveal intentions and have immediate payoff consequences.

We then explore how different network structures—in which participants observe only

the actions of a limited number of neighbors—affect the ability of the group to aggregate

dispersed information and successfully coordinate on the correct action. Our goal is to

identify which features of the environment facilitate or hinder collective success in the

presence of local information frictions. Furthermore, studying both high school and un-

dergraduate students allows us to capture behavioral variations across populations with

different levels of maturity, experience, and strategic sophistication. This design enables

us to explore whether coordination failures arise primarily from network structure or

whether individual traits—such as willingness to explore, trust in signals, or responsive-

ness to peers—also shape collective outcomes.

Our experiment shows that successful coordination depends on a combination of struc-

tural and behavioral factors. First, and perhaps unsurprisingly, network size matters.

Because the game exhibits a weakest-link feature, where a single deviation is sufficient

to prevent success, coordination naturally becomes more fragile as the number of partic-

ipants increases. Second, neighborhood size plays a critical role. Networks with more

interconnected participants create greater opportunities for information exchange and dif-

fusion, making consensus more likely. Third, the distribution of signals shapes outcomes.

When individuals with incorrect signals are concentrated within small, tightly-knit neigh-

borhoods, it is much harder to overturn local misinformation than when incorrect signals

are evenly dispersed across the population. Finally, we find striking behavioral differences

across populations. Undergraduate students are more likely to act initially in line with

their private signal and adjust their behavior quickly in response to their peers. Compared

to high school students, they switch actions more frequently, adapt faster to changes in

their local environment, and exhibit greater responsiveness to their neighbors’ choices,

behaviors that facilitate coordination in dynamic settings.

Together, our results show that even when individuals share common interests, coordi-

nation is fragile in locally connected networks, and success depends critically not only on

the design of the network but also on the behavioral characteristics of its participants. This

highlights the core challenge of building environments that support information diffusion

and enable effective collective action.
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2 Results

2.1 Research design

We conducted the experiment with 415 high schoolers (ages 14 to 18) from Oscar de la

Hoya Animo Charter High School (odlh) and 265 undergraduates (ages 18 to 23) from

the University of Southern California (usc). Participants were grouped into networks of

10 or 15 individuals at odlh, and into networks of 10, 15, or 20 individuals at usc. Each

network played a game in which nature first selected a state of the world (color red or blue)

and sent a private signal to each individual. Signals were represented as light versions of

the color of each possible state of the world. In each round, 60% of participants received

a signal of the correct color, while the remaining 40% received a signal of the wrong color

(see Figures 1(a), 1(b) and 1(c)).

(a) Network of 10 (b) Network of 15 (c) Network of 20

Figure 1: Panels 1(a), 1(b) and 1(c) show three examples of the full network structure, visible only to
the experimenter for networks of 10 (HS), 15 (HA) and 20 (LS), respectively. The solid color represents
the true state (red in all three cases). Each node corresponds to one player ID, and the light color on each
node represents the signal received at the beginning of the round by that player: 60% correct (light red)
and 40% wrong (light blue). Each line represents a direct connection, that is, a neighbor whose choice is
observed by the participant. In networks of 15, there are 3 clusters of players (IDs 1 to 5, 6 to 10 and 11
to 15) and in networks of 20, there are 4 clusters of players (IDs 1 to 5, 6 to 10, 11 to 15 and 16 to 20).

Participants had 60 seconds (for networks of 10), 75 seconds (for networks of 15), or 90

seconds (for networks of 20) to update their actions (i.e., their color choices). During this

period, they could observe in real time the choices made by a limited set of neighbors—

their direct links (see Figure 2(a)). If at any point within the allotted time all participants

in the network simultaneously coordinated on the correct color (the one matching the

true state), the round was stopped, marked as a success, and each participant received a

positive payoff (see Figure 2(b)). If the time expired without full coordination, the round

was considered a failure and no payoff was earned (see Figure 2(c)).

In each round, participants were assigned either a high (H) or a low (L) number of
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Figure 2: Graphical User Interface. Panel 2(a) shows a screenshot of the game as observed by a
player. The player is labeled “you” and always placed in the center with the neighbors (four in this
example) arranged equidistantly to prevent framing. The signal appears in the top right corner in light
color at the beginning of each round. Players activate and change their choice by tapping on a color under
“your action”. Choices are immediately observed by neighbors. The timer at the top of the screen runs
backwards. Panels 2(b) and 2(c) show the feedback at the end of the round, including correct state (color
of the “World”), number of players on each color, and payoff obtained by all players in the network.

neighbors with whom they could share information. Additionally, signals were distributed

either symmetrically (S) or asymmetrically (A) across the network. We employed a 2 × 2

within-subject design, in which each participant played 4 rounds of each condition (HS,

LS, HA, LA), presented in counterbalanced blocks of two. Participants played all rounds

with the same set of partners but were randomly reassigned to a different position within

the network in each round, for a total of 16 rounds. At the end of each round, participants

learned the correct state, the final number of participants selecting each color, and the

payoffs received by all members of the network.

We hypothesized that coordination success would be lower when the network size was

larger (due to a weakest-link problem), when participants had fewer neighbors (limiting

information flow), and when signals were distributed asymmetrically (increasing the risk

of local clusters receiving misleading information). Consequently, we expected the lowest

success rates in condition LA and the highest in HS. When comparing across populations,

we expected higher success rates among undergraduates from a highly ranked university

(usc) than among high school students from a historically underprivileged neighborhood

(odlh). We provide additional details on the experimental procedures in section 4 and

the full set of instructions in Appendix SI1.

2.2 Network outcomes

Our primary research question is whether and how networks can successfully aggregate

dispersed information to reach consensus on the correct state. In principle, the task would
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be trivial in a world with global information—where individuals could observe everyone

else’s choices. In such a scenario, individuals could start by selecting the color of their

private signal, then observe the decisions of all others, and deduce the correct state by

identifying the majority choice. At the opposite extreme, in the absence of any connections

or opportunities to share information, successful aggregation would be nearly impossible,

as individuals would have no basis for revising their initial belief beyond their own signal.1

With access to local information and the possibility of sharing, the problem becomes more

complex: information spreads gradually and imperfectly through the network. However,

as we will show, successful coordination remains feasible under these conditions.

The determinants of success

Figure 3 reports the proportion of successful rounds. Table 1 reports a Probit regression

of the likelihood of network convergence on the correct action.
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Figure 3: Proportion of successful rounds in each population (odlh, usc) and network size (10, 15, 20),
as a function of neighborhood size (H or L), and signal distribution (S or A), including the average for
each case (All).

There is a substantial gap in the proportion of successful rounds between odlh and

usc participants (26.0% v. 82.3% and 21.3% v. 69.6% in networks of 10 and 15, χ2-test of

differences in proportions, p < 0.0001). Within odlh, performance does not significantly

differ across network sizes (p = 0.236). In contrast, performance at usc varies with network

size, showing a modest decline from networks of 10 to 15 and a substantial drop in networks

of 20 (pairwise comparisons with FDR correction between 10 and 15, p = 0.051; between

10 and 20, p < 0.0001; between 15 and 20, p < 0.0001).

1If participants rely solely on their private signals, the optimal strategy is to follow their signal with the
same probability that it is correct—in our case, 0.6. Under this strategy, the probability that all participants
independently choose the correct state (i.e., successful coordination) is extremely low. Specifically, the
probabilities of success are approximately S10 = (0.6)6 (0.4)4 ' 0.0012, S15 = (0.6)9 (0.4)6 ' 4.1 × 10−5

and S20 = (0.6)12 (0.4)8 ' 1.4× 10−6 in networks of 10, 15 and 20, respectively.
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odlh usc

Network of 15 −0.128 −0.432
(0.192) (0.330)

Network of 20 −1.835∗∗∗

(0.318)
A round −0.149 −0.667∗∗∗

(0.112) (0.157)
L round −0.309∗ −0.147

(0.131) (0.183)
2nd half 0.089 0.146

(0.127) (0.192)
Constant −0.470∗ 1.311∗∗∗

(0.192) (0.255)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 1: Probit regression of the likelihood of network convergence on the correct action in each
population with dummies for network size (reference is 10), neighborhood size (reference is H), signal
distribution (reference is S) and first v. second half of the experiment (reference is first).

The difference in performance between the allegedly easiest (HS ) and most difficult

(LA) treatments is significant in usc 10 (0.875 v. 0.625, p = 0.046), usc 20 (0.45 v. 0.05,

p = 0.003), and odlh 10 (0.36 v. 0.13, p = 0.0007), but not in usc 15 (0.79 v. 0.68,

p = 0.36) and odlh 15 (0.23 v. 0.21, p = 0.81). This pattern is consistent with the effects

of asymmetry and the number of neighbors on performance, as reported in Table 1.

Two simple explanations for why some networks fail to achieve convergence could be

that participants do not put in sufficient effort or that network failure is driven by a small

minority of unskilled, stubborn, or inattentive individuals. However, we find evidence

that contradicts both explanations. In Table 2, we analyze unsuccessful trials by tracking,

for each round, the maximum and minimum fractions of correct actions reached within

the network over time, as well as the final fraction of correct actions. We then compute

averages across all unsuccessful rounds, broken down by population and network size.

odlh 10 odlh 15 usc 10 usc 15 usc 20
Max. correct .68 .50 .65 .70 .70
Min. correct .27 .52 .32 .28 .25
Final correct .45 .47 .45 .47 .51
# obs. 304 232 96 112 80

Table 2: Maximum and minimum number of correct actions (on average) over the course of an un-
successful round and final number of correct actions (on average) at the end of an unsuccessful round,
computed separately for each population and network size.

6



With the exception of odlh 15, we observe substantial variation in the number of

correct actions within a round, ranging from one-quarter (minimum) to two-thirds (max-

imum). This spread indicates that participants are actively experimenting with different

strategies: switching actions, taking the lead, or mimicking peers, all in an effort to co-

ordinate on the true state. Regarding the final choices, the average proportion of correct

actions consistently hovers around one-half. This suggests that failure cannot be attributed

to a small subset of participants who persistently misunderstand the task and undermine

the group outcome. Rather, the lack of convergence appears to be a robust phenomenon

driven by the inherent difficulties of aggregating dispersed information within a network.2

What behavioral differences might then explain the gap in success rates across the two

populations? The answer lies in differences in exploration behavior. First, the average

number of actions per participant — in successful and unsuccessful rounds, and in networks

of 10 and 15 — is 1.89 and 2.54 in odlh, compared to 2.26 and 3.43 in usc. This

corresponds to 20% more switches in usc than in odlh in successful rounds, and 35%

more switches in failed rounds (test of differences between populations, p < 0.0001 in both

cases). In other words, usc participants revise their actions more frequently.

Second, the proportion of rounds in which all participants simultaneously coordinate

on the wrong state and subsequently change their actions is significantly higher in usc

than in odlh: 32.3% vs. 18.4% in networks of 10, and 27.7% vs. 14.6% in networks of 15

(χ2-tests of differences in proportions, p = 0.006 and p < 0.0001, respectively). Conversely,

the proportion of rounds in which participants coordinate on the wrong state and remain

there is significantly lower in usc than in odlh: 1.0% vs. 8.2% in networks of 10, and

1.8% vs. 4.8% in networks of 15 (χ2-tests, p < 0.0001 in both cases).

Taken together, these results suggest that usc participants explore more — sometimes

converging prematurely on the wrong state — but crucially, they continue experimenting

as long as time permits. By contrast, odlh participants explore less — reducing the like-

lihood of coordinating on the wrong state — but once they and their immediate neighbors

align on a common action, they appear more inclined to believe that failure to converge

is due to errors in other parts of the network, and thus tend to stay put.

Choice dynamics

Given the large shifts in the number of correct actions within a round (Table 2),

2To illustrate the difficulty of achieving consensus, consider an example in a 20-player network where
10 participants (IDs 6 to 15 in Figure 1c) choose red and the other 10 choose blue. Among the red players,
2 individuals (IDs 10 and 15) have two neighbors choosing red and one choosing blue, while the remaining
8 have all three neighbors choosing red. The same symmetric structure holds for the blue players. This
example demonstrates that even with sophisticated individuals, local homogeneity within neighborhoods
can coexist with global heterogeneity across the network, making convergence challenging despite consistent
local signals.
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it is informative to examine the dynamics of choice in more detail. Among successful

rounds, the average time (in seconds) it takes participants to converge on the true state

is: 32.2 (odlh 10), 45.2 (odlh 15), 26.8 (usc 10), 42.1 (usc 15) and 51.9 (usc 20).

Not surprisingly, convergence is slower in networks of 15 compared to networks of 10 in

both populations (t-tests, p = 0.001 for odlh and p < 0.0001 for usc). Convergence

is also significantly slower for usc in networks of 20 compared to networks of 10 (t-test,

p = 0.003) though not significantly different from networks of 15 (p = 0.211). Finally,

while convergence is slower in odlh than in usc overall (Figure 3), the difference is only

statistically significant in networks of 10 (t-test, p = 0.033).

Next, we examine the within-round evolution of the number of correct actions taken

by participants in the network. Figure 4 illustrates this dynamic for selected treatments.

We focus on successful rounds, as they contain richer information – including both the

time to convergence and the magnitude of fluctuations in choices along the way. We also

restrict the analysis to usc, which offers sufficient observations to enable comparisons

across treatments (HS v. LA). In contrast, the number of successful rounds in odlh is too

small to allow for meaningful comparisons.
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(a) usc 10
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(b) usc 15
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Figure 4: Each line shows the evolution of the number of participants at usc choosing the correct
action in a successful round as a function of elapsed time (in seconds). The vertical dotted line indicates
the average time at which all participants in that treatment have made at least one choice. The vertical
solid line marks the time limit for the round (60s, 75s or 90s). The lower and upper horizontal dotted lines
represent the bounds where no participant or all participants, respectively, are simultaneously choosing
the correct action. Panels (a) and (b) display the HS (top) and LA (bottom) treatments for networks of
10 (left) and 15 (center). Panel (c) presents all successful treatments for networks of 20 (right).
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Even though we focus only on successful rounds within a single population, we observe

dramatic differences across network sizes and treatments. In smaller networks (10 and

15), choice dynamics are characterized by frequent switching (“chattering”), whereas in

larger networks (20), transitions are slower and smoother. This pattern leads to faster

convergence on the true state in smaller networks but also increases the likelihood that all

participants temporarily coordinate on the wrong state before correcting their actions.

Within each network size, we also find significant differences between the treatments

we identified as the easiest (HS ) and the hardest (LA). While the overall proportion of

successful rounds does not differ dramatically between these treatments (Figure 3), the

speed of convergence does. Fast convergence (within 20 seconds) occurs frequently in HS

(71.4% and 54.6% of successful rounds for networks of 10 and 15, respectively) but is rare

in LA (13.3% of successful rounds for networks of 10 and never for networks of 15).

Finally, motion animations illustrating the dynamics of choices in selected representa-

tive networks are available at https://labelinstitute.github.io/NetworkMovies/. In these

animations, the colored rings indicate each participant’s private signal, while the right-

hand panel displays the sequence of choices, including the participant’s ID, selected color,

and time of action. For ease of visualization, the animations proceed one choice at a time

at uniform time intervals, without reflecting the actual timing delays between choices.

2.3 Individual analysis

While the network analysis accounts for aggregate performance, it is also important to

examine behavioral differences at the individual level. In Figure 5, we report the initial

choice of odlh and usc participants in the network sizes common to both populations

(10 and 15), using this measure as an indicator of their initial intentions.

We observe a substantial difference in initial behavior across populations (Figure 5a).

usc participants make their first decision very quickly (median time: 2.7 seconds) and

almost systematically follow their private signal (91.8%). By contrast, odlh participants

are significantly slower in making their initial choice (median time: 4.8 seconds) and

are less likely to follow their signal (63.8%). The distribution of decision times differs

between odlh and usc participants (Wilcoxon rank-sum test, p < 0.0001), and the average

probability of following one’s own signal is also significantly higher at usc (t-test, p <

0.0001). These findings suggest fundamentally different strategies across populations —

not only in how participants react to the choices of others (as previously observed), but

also in how they approach the decision problem from the outset.

When we divide the usc sample based on response time, we find that fast movers

(Figure 5b) always follow their signal, whereas some slow movers (Figure 5c) occasionally

do not (97.4% vs. 87.0% on average). A similar pattern emerges in odlh, despite their
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(c) Slow movers

Figure 5: Panel (a). Distribution of individuals in each population for networks of 10 and 15 as a
function of the proportion of rounds where first action coincides with signal. Panels (b) and (c). We split
the sample into individuals whose average delay until first action is below median (fast movers) and above
median (slow movers), and perform in each subsample the same analysis as in Panel (a).

lower overall tendency to follow signals (69.6% vs. 58.0% on average). Differences are

statistically significant in both populations (t-tests, p < 0.0001). Thus, although the two

populations differ in how they approach the initial choice, in both cases fast movers are

more likely to follow their signal and take the lead, while slower movers are more likely to

weigh their private signal against the observed actions of others before deciding.

Next, we present in Figure 6 the individual-level performance in the game.

Not surprisingly in view of Figure 3, individual performance is substantially higher

in usc than in odlh (KS test of stochastic dominance, p < 0.0001 for all three pairs of

distributions), with an impressive 67% of usc participants finishing at least 14 out of 16

rounds in the correct action (Figure 6a). However, variance in individual performance is

large, especially in odlh.

Interestingly, within each population, the difference in the number of correct actions

between rounds where participants received the correct signal (Figure 6b) and rounds

where they received the wrong signal (Figure 6c) is statistically significant but modest in

magnitude: 88.2% vs. 83.7% in usc, and 61.5% vs. 52.2% in odlh (paired t-tests, p = 0.002

and p < 0.0001, respectively). This suggests that participants in both populations are

influenced by their private signal, but not dramatically so. Instead, they are (rightly)

willing to adapt their choices to align with the actions of their neighbors. This finding

contrasts with results from the traditional social learning literature, which often reports

strong overweighting of private information [9].

Finally, we focus on networks of size 15 and identify situations within a round where a

cluster of interconnected individuals (IDs 1 to 5, IDs 6 to 10, or IDs 11 to 15 in Figure 1b)
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(b) Signal = State
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(c) Signal 6= State

Figure 6: Panel (a). Distribution of individuals in each population for networks of 10 and 15 as a
function of the proportion of rounds where the final action of the individual is correct. Panels (b) and (c).
We split the sample into cases where the individual received the correct and the wrong signal, and perform
in each subsample the same analysis as in Panel (a).

all simultaneously choose the same action. These situations are particularly prone to gen-

erating stagnation — either on the correct or incorrect action — as individual choices

are reinforced by those of immediate neighbors. Consistent with the higher frequency of

action switching observed in our undergraduate population, such clustering events occur,

on average, 3.21 times per round in odlh and 4.01 times per round in usc. We then com-

pute the number of instances in which a participant breaks the consensus of their cluster

despite observing the same action among all of their neighbors, as opposed to switching

because they observe a different action from one individual in another cluster. We find

that deviations without any supporting evidence from neighbors occur with probability

0.69 in odlh and 0.51 in usc (test of difference of proportions, p < 0.0001). This sug-

gests that although high school participants are generally less likely to switch actions than

undergraduates, conditional on switching, they are significantly more prone to breaking

local consensus without any observable justification, that is, without information from

their immediate environment to support the change.

3 Discussion

Our findings demonstrate that consensus is far from guaranteed even when everyone stands

to benefit from the same result. Local observation of neighbors’ actions often leads to

pockets of incorrect beliefs that stall global coordination, especially in larger networks,

networks with fewer connections, and networks with asymmetric distribution of signals.

Participants frequently switch their choices in an effort to coordinate, but final outcomes
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nonetheless vary greatly by treatment and population. The overall results underscore the

fragility of coordination under imperfect information and local sharing.

usc v. odlh. A stark contrast arises between undergraduate and high school partic-

ipants in initial choice, frequency of switching, and likelihood of convergence. usc par-

ticipants adopt a more exploratory approach. They appear to reason that if their entire

neighborhood has coordinated on one action but the network remains stuck, their pocket

is likely in error. By contrast, many odlh participants seem to trust their local consensus

once it is reached, believing that if global consensus has not been achieved, it is because

other neighborhoods are making the mistake. This greater caution or inertia dampens the

chance of ultimately escaping a unanimous yet incorrect position. A potential explana-

tion for these behavioral differences (along the lines of repeated game experiments among

individuals with different IQ [18, 19] or different academic achievements [3]) is that usc

participants are more sophisticated strategic thinkers. However, the gap could also stem

from differences in maturity, impulsivity, patience, or knowledge of peers.

Designing Networks for Coordination. Our experiment highlights several ways in which

altering the network structure or the information environment could affect the ability of

participants to aggregate dispersed information and coordinate successfully. Beyond the

baseline setting, natural variations arise that would illuminate different mechanisms behind

coordination successes and failures. First, requiring supermajority rather than unanimity

might mitigate the weakest link problem, since a single outlier would not prevent an

otherwise convergent network from succeeding. Second, some players could receive no

private signal, forcing them to rely on the actions of their better informed neighbors,

as in the political economy literature on voting [8]. This variant would reveal whether

those with private information become pivotal influencers or whether confusion spreads

globally. Third, networks with skewed connectivity structures — for example, a star

topology where certain individuals have disproportionate influence — could highlight the

role of central hubs in accelerating or impeding convergence, as explored in [20]. Finally,

adding a third possible state might increase the complexity of the inference problem,

but at the same time reduce the likelihood of large-scale mis-coordination, since each

incorrect signal would reach a smaller fraction of the network. These variations directly

relate to insights from percolation theory [22], which studies the conditions under which

local actions or information can propagate across a system. Our findings suggest that

coordination failure is not simply due to unwillingness to cooperate but reflects structural

limitations that prevent correct information from percolating through the network.

Individual Traits and Group Composition. In addition to structural factors, the com-

position of the population—psychological traits, preferences, demographic characteristics

or prior experience—is likely to play a crucial role in coordination dynamics. The litera-

12



ture on leadership and critical mass in networks [13, 21] emphasizes that a small number

of proactive or influential individuals can play a pivotal role in steering behavior adoption

especially in environments with local information frictions. In our context, introducing

“partisan” players who care only about promoting a specific action — as often seen in

political or ideological contexts [10] — would test the resilience of collective judgment in

the face of misinformation. Alternatively, grouping individuals based on personality traits

such as agreeableness (measured via the Big Five questionnaire) might facilitate coordi-

nation due to greater cohesion, but could also increase the risk of premature convergence

on incorrect actions if no one is willing to challenge the local consensus. Similarly, same-

gender networks might exhibit more consistency in risk attitudes, trust, or communication

style, all of which could influence behavior. Contrasting such homogeneous networks could

shed light on which social or cognitive factors most directly promote or hinder informa-

tion aggregation. Another particularly relevant extension concerns mixing populations

of different backgrounds or strategic sophistication. For example, combining usc under-

graduates and odlh high schoolers in the same network could reveal whether dynamic

leaders from the first group induce hesitant participants from the second to switch actions,

demonstrating positive peer influence. Alternatively, mixed networks might still experi-

ence clusters resistant to change, eroding the advantage of more exploratory individuals.

This type of hybrid design would clarify how much critical mass of dynamic players is

needed to steer an entire network toward the correct state — a question with direct impli-

cations for leadership, organizational behavior, and the design of interventions in diverse

real-world environments where ability levels, education, and risk attitudes vary.

Overall, this study shows how laboratory experiments can be used to isolate and quan-

tify the drivers of collective behavior in networks. When information is local and coordi-

nation depends on observing peers, global success hinges as much on network structure

and signal distribution as on individual effort. This has broad implications for policy and

organizational design: fostering cooperation, combating misinformation, and improving

collective decision-making require not only motivated individuals, but also environments

that support information flow and prevent local consensus on wrong alternatives.

4 Methods

The study was conducted with approval from the University of Southern California In-

stitutional Review Board under protocol UP-12-00528. For odlh, consent forms were

distributed to parents through the school administration, allowing for an opt-out option.

On the day of the experiment, participants were read an assent form and asked whether

they wished to participate; no student or parent declined participation. All participant
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data were anonymized to ensure confidentiality and securely stored in accordance with our

IRB protocol. usc participants were adults who provided written informed consent prior

to enrolling in the subject pool.

Each session was conducted either at odlh or usc with networks of 10, 15, or 20

participants. Participants first played one practice round, followed by 16 incentivized

rounds, always with the same group of partners but assigned to random positions within

the network in each round. The table below summarizes the number of groups and total

participants by population and network size.

Population odlh odlh usc usc usc
Network size 10 15 10 15 20
# of groups 19 15 6 7 5
total ind. 190 225 60 105 100

For odlh, we set up a portable laboratory in a classroom using PC tablets connected

to one another and to a portable server via a closed wireless network. The system operated

through a dedicated router, ensuring no external connectivity. Participants arrived one

class at a time and were seated at individual stations with physical separations to preserve

anonymity. The experiment was programmed in oTree [5]. Since the networks involved

either 10 or 15 participants, we required group sizes to be a multiple of 5. Any additional

students were engaged in a separate task while the experiment took place.

The experiment followed a structured sequence. First, instructions were read aloud to

participants, accompanied by a PowerPoint presentation (as detailed in Appendix SI1).

Participants then played one practice round, which did not count toward their earnings,

during which they could raise their hand to ask clarification questions privately. Following

this, participants completed eight blocks of two rounds each, varying along two dimensions:

a high (H) or low (L) number of neighbors, and a symmetric (S) or asymmetric (A)

distribution of signals. The complete list of treatment variants by network size is provided

in Appendix SI2. At the end of the session, participants were paid in cash a $10 show-up

fee plus $0.50 per successful round. All members of a network earned the same amount.

Procedures at usc were identical, except that sessions were conducted at LABEL,

our experimental laboratory in the Department of Economics, and included networks of

20 participants in addition to those of size 10 and 15. Sessions lasted approximately 40

minutes, and participants earned an average of $11.86 at odlh and $14.34 at usc.

Data availability statement: The datasets generated and analyzed in this study are

available at this link.
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Supplementary Information

SI1. Instructions at ODLH

Hello, thank you for coming. Today, we are going to play a few computerized games and make
money. In all the games, you are going to win points. At the end, you will be paid $1 for every
100 points accumulated. You will also be paid $10 just for playing with us.

The computer is going to form a network with many people. Each of you will be directly
connected only to a few people but the people you are connected to are also themselves connected
to other people and so on. This means that everyone is indirectly connected to everyone else in
the network. Think of your connections as being the people you talk to, who themselves talk to
other people, etc. Now, what do you have to do?

The goal of the game is to guess the color of the world. The world can be RED or BLUE.
[SLIDE 1] - [see Figure SI1 for the slides projected on the screen at the front of the classroom]

The computer will choose one color of the world with 50-50 chance, but it will not tell you.
Instead, it will give each of you a signal.

- If the world is “RED”, more people will see a signal “light red”, and fewer people will see a
signal “light blue”.

- If the world is “BLUE”, more people will see a signal “light blue”, and fewer people will see
a signal “light red”.

Note that more people get the signal that corresponds to the true color of the world but not
everyone, otherwise the game would be too easy. We are using light colors to make clear that it
is an indication, and therefore it may be wrong. In your computer, you will see a screen like this.
[SLIDE 2]

Let me walk you through the different parts of the screen. [SLIDE 3]

First, you can see your neighborhood. These are the people you are directly linked to, in this
case 4 people but in your session, it may be a different number. Visually, you are always at the
center of your neighborhood, and these are your neighbors [point to the neighbors in the screen].
This is because you see your neighborhood from your own perspective. Other people will be at the
center of their own neighborhood.

If you are linked to one person, that person is linked to you. But remember, they will be also
linked to people you are not linked to and you will be also linked to people they are not linked to.
[SLIDE 4]

Second, you can see your signal. In this case, your signal provides support that the world is
BLUE. But, of course, you cannot know for sure. [SLIDE 5]

Third, you can see your possible actions. That’s where you make your decisions. You have to
choose between the RED action and the BLUE action. As soon as you choose an action, you and
your neighbors will see it [point at area (1)]. When your neighbors choose their actions, it will also
appear here. After you see their actions, you can change yours. . . or not. It is totally up to you.

The action is important because it determines your payoff. If at some point during the round
everyone in the entire network, that is everyone in all the neighborhoods, chooses the action that
matches the color of the world, you will all earn 50 points, that is 50 cents. If at least one person
in the network chooses the action that does not match the color of the world, you will all get 0
points. Of course, if you all choose the same action but it does not match the color of the world,
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you will still get 0 points. Remember you get 50 points only if everyone chooses the action that
matches the color of the world. Is this clear? [SLIDE 6]

Finally, you will see a timer at the top of the screen. This tells you the amount of time left
to play. You start with a certain amount of time and the clock runs backwards. You can change
your action as many or as few times as you want and the same is true for your neighbors and
everyone else in the network. Every time you change your action it appears immediately on the
screen of your neighbors and every time your neighbors change their actions, it appears on your
screen. If you want to change your action multiple times, you have to wait at least two seconds
between changes. Now this is very important. If at any point you all chose the correct action, the
clock stops, and you all get your 50 points. If you run out of time and at least one person has the
wrong action, you all get 0 points.

At the end of the round, you will see a screen like this. [SLIDE 7]

It tells you what the actual color of the world was (in this case, blue), how many people chose
the RED and BLUE actions (in this case 13 and 7) and your payoff (in this case 0, since not
everyone chose blue).

You are going to play this same game multiple times. Each time, the computer will randomly
choose the color of the world with a 50-50 chance. Each time you will get a new signal and a new
set of neighbors, but the rules of the game are always the same: if you all collectively choose the
color of the world you all get 50 points.

Before we start, we are going to play a practice round. This is only to familiarize yourself
with the screen, the software, and the commands. The results of this round do not count for your
final payment so feel free to play around, experiment and change the actions multiple times. Any
questions?
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Figure SI1: Slides projected on screen for instructions

19



SI2. Description of all the network variants

We conducted 4 rounds of each variant (HS, LS, HA, LA), where H is high number of neigh-
bors, L is low number of neighbors, S is symmetric distribution of signals, and A is asymmetric
distribution of signals. Figures SI2, SI3 and SI4 present the four variants for networks of 10 (odlh
and usc), 15 (odlh and usc) and 20 (only usc). In all these examples, the correct state is red.

Figure SI2: Treatments HS, LS, HA and LA in networks of 10 (odlh and usc)

Figure SI3: Treatments HS, LS, HA and LA in networks of 15 (odlh and usc)

Figure SI4: Treatments HS, LS, HA and LA in networks of 20 (usc)
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