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Abstract

Do children use private information to their own advantage? Is this ability related
to emotional intelligence? To answer these questions, we conduct a large lab-in-the-
field experiment with 1662 participants from 8 to 18 years old who play a game with
two-sided private information. We show that participants of all ages understand the
fundamental relationship between action and private information. The ability to select
payoff-enhancing strategies steadily increases with age but the capacity to recognize
subtle variations in incentives triggered by changes in game structure remains elusive
even for individuals at their peak cognitive capacity. Remarkably, participants of
all ages who have heightened emotional intelligence exhibit a greater tendency to
anticipate the behavior of others, best respond to them and, consequently, achieve
higher payoffs. The paper thus reveals a strong, robust connection between affective
and cognitive-theory-of-mind in young populations. It also highlights the importance
of empathic skills for decision making.
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1 Introduction

Scenarios involving private information are challenging. Laboratory and field experiments

indicate that not only students, but also seasoned investors and experienced entrepreneurs

fall prey to the winner’s curse in common value auctions (Thaler, 1988; Kagel and Levin,

2002). Similar findings apply to bargaining (Grosskopf et al., 2007; Bereby-Meyer and

Grosskopf, 2008) and asset trading (Carrillo and Palfrey, 2011). Although progress has

been made in understanding the causes of deviations (Charness and Levin, 2009; Brocas

et al., 2014) our knowledge is still incomplete.

In this paper, we address two issues. First, we study the developmental trajectory in

the ability to optimally incorporate private information in our decisions. We consider a

broad age spectrum and a large number of individuals (1662 participants ranging from

8 to 18 years old), and determine which fundamental aspects about the strategic use

of private information are innate, learned with age, or remain undeveloped. By doing

so, we seek to gain deeper insights into the challenges that individuals face regarding

information asymmetries, even after reaching intellectual maturity. Second, we study

the joint evolution of strategic thinking ability (cognitive theory-of-mind or c-ToM) and

emotional intelligence (affective theory-of-mind or a-ToM). The goal is to determine if

individuals with a heightened ability to recognize and empathize with the emotions of

others also excel in deciphering their intentions, thereby achieving superior outcomes.

The game we study is a variation of the ‘compromise game’ introduced by Carrillo and

Palfrey (2009) (from now on, [CP]), which can be illustrated with the following stylized

example. Two parties engaged in a dispute privately know the strength of their case.

They can settle the dispute and obtain intermediate payoffs. Or, they can go to litigation,

where both strengths are revealed. The party with the stronger case wins and receives

a high payoff, while the party with the weaker case loses and receives a low payoff. We

consider four treatments that share the basic structure but differ in the way outcomes and

payoffs are computed.1

This game has two highly desirable features compared to most games with two-sided

private information. On the one hand, it is extremely simple to explain, even to an 8 years-

old child. On the other hand, analyzing strategic thinking in this game is not limited to

1In section 2, we discuss several applications that align with the fundamental characteristics of each
treatment and establish the equilibrium for each case. Naturally, “litigation” is not a wording presented
to our young subjects.
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understanding whether participants play at equilibrium or best respond to the empirical

behavior of others. In fact, choices in this game can be classified into three nested degrees

of rationality. This allows us to determine which ability is mastered at each age, thus

providing a more nuanced view of the development in the ability to think strategically.

The most basic degree of rationality, called choice monotonicity, is computed at the

aggregate level. It posits that the likelihood of litigation in a group increases with the

strength of the case. The next degree, called strategic consistency, represents a refinement

at the individual level of the first degree. It stipulates that individuals should employ “cut-

point” strategies: settle if the strength is below a certain value and litigate if the strength

is above it. These two characteristics–choice monotonicity and strategic consistency–hold

across all treatments and highlight the relationship between information and action in the

decision-making process. The third and most sophisticated degree of rationality, called

environmental variability, prescribes that cutpoints vary across treatments. This variation

arises because the equilibrium and best response cutpoints are influenced by treatment-

specific incentives of players, both exogenous (how payoffs are determined) and endogenous

(how a rival is expected to employ their private information in that particular treatment).

Achieving this degree of rationality is cognitively demanding because it necessitates an

optimal response to subtle shifts in incentives and beliefs, and it can only be examined

through our innovative experimental design with multiple treatments.

The experiment provides interesting insights into age-related evolution in behavior.

We show that participants exhibit choice monotonicity from an early age: subjects in all

grades align their choices with the principle that higher values warrant choosing the litiga-

tion option. The study also finds that strategic consistency is prominent even among the

youngest participants (one-half of participants aged 8 to 10 employ cutpoint strategies).

This tendency grows steadily with age, even though participants never reach full compli-

ance (three-quarters of participants aged 16 to 18 employ cutpoint strategies). Finally, the

study reveals that environmental variability is missing across all ages. This absence per-

sists even when examining only the subset of the oldest participants who employ cutpoint

strategies. In other words, the nuanced differences in incentives stemming from subtle al-

terations in the game structure are not recognized by even the most sophisticated players

in the study. In sum, the experiment sheds light on the developmental shift in the ability

to engage in strategic thinking. While there appears to be an inherent human capacity

to grasp the fundamental importance of conditioning choices on private information, the
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skill of a step shift in behavior based on information is acquired during childhood and

adolescence. The additional and more complex step of conditioning on subtle external

factors is a cognitive challenge that even young adults find it difficult to master.

We then perform an emotional intelligence test and uncover a strong and robust corre-

lation between cognitive and affective theory-of-mind. Controlling for age, individuals who

are best at reading the emotions of others also perform best in our game: they react more

to their information, they use cutpoint strategies more frequently, they are more likely to

best respond to the strategies of others and they obtain significantly higher payoffs. This

finding suggests that the capacity to physically perceive and interpret emotions is closely

intertwined with the ability to mentally decipher intentions. Connecting the two dimen-

sions of theory of mind is an important finding per se for behavioral sciences, as these

aspects are frequently perceived as distinct abilities. Our finding also implies that investi-

gations into strategic behavior should not exclusively focus on associations with cognitive

capabilities but should also explore the emotional processes that steer our actions.

Our paper is related to two strands of the literature. It contributes to the growing

research on decision-making in children and adolescents. Prior game theoretic experiments

have predominantly focused on games with complete information. Exceptions include

Murnighan and Saxon (1998) who study an ultimatum game where the receiver privately

knows the size of the pie and Sher et al. (2014) who analyze a hide-and-seek game where

the hider knows the location of the prize and sends a signal to the seeker. In contrast,

our study aims to investigate how age-related changes manifest in more complex games

where asymmetric information is two-sided and individuals must uncover the relationship

between the rival’s action and their information.

Our paper also contributes to the growing body of research examining the relation-

ship between fundamental abilities and performance in strategic contexts. Prior studies

have primarily emphasized cognitive abilities, such as fluid intelligence (Brañas-Garza

et al., 2012; Proto et al., 2019, 2022), and, to a lesser extent, cognitive theory of mind

(Fe et al., 2022), highlighting positive associations between these constructs. Similarly,

research has established links between cognitive theory of mind and abstract reasoning in

children within educational settings (Alan and Turkum, 2024). We extend this literature

by shifting the focus to the relationship between strategic abilities and affective compo-

nents. Emerging evidence suggests that affective processes—how individuals experience,

regulate, and respond to emotional stimuli—play a significant role in shaping behavior
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(Naqvi et al., 2006; Lerner et al., 2015). Moreover, studies indicate that affective and

cognitive processes are supported by overlapping neural mechanisms, underscoring their

interconnectedness (Corradi-Dell’Acqua et al., 2014). Despite this, affective components

have largely been examined in the context of prosocial behavior or the development of

socio-emotional skills (Alan et al., 2021). In contrast, our study directly tests the hy-

pothesis that affective mechanisms, alongside cognitive abilities, are critical for shaping

decision-making outcomes in strategic environments.

The paper is organized as follows. Section 2 presents the game and equilibrium. Sec-

tion 3 describes the experiment and discusses the hypotheses. In section 4, we study the

aggregate choices of our population. Section 5 reports an analysis of individual strate-

gies, comparing them across ages, treatments and decisions. In section 6, we discuss the

relationship between affective and cognitive theory-of-mind. Section 7 discusses cursed

equilibrium in the context of our game. Section 8 gathers concluding remarks.

2 The game

2.1 Treatments

We study several variations of [CP], a two-player game with two-sided private informa-

tion. Players 1 and 2 are indexed by i and j. Player i has private value xi drawn from

distribution Fi(xi |xj) with support [x, x]. To prevent ties, we also impose xi 6= xj . Player

i chooses action ai ∈ {p, s}, where p stands for “pass” and s stands for “see” in the ter-

minology of the experiment. Final utilities depend on the action and information of both

players ui(ai, aj ;xi, xj). We consider a benchmark treatment and three variants.

Benchmark.

T1. Players move simultaneously. If both ‘pass’ (p), the outcome is ‘compromise’ (e.g.,

settlement), and each player obtains a medium payoff. If at least one player chooses

‘see’ (s), the outcome is ‘competition’ (e.g., litigation): the player with highest value

obtains a high payoff and the player with lowest value obtains a low payoff. Formally:

ui(p, p) = m and ui(ai, aj) =

{
h if xi > xj

l if xi < xj
whenever (ai, aj) 6= (p, p)

with l < m < h and x < m < x.
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Variants.

T2. Identical to T1 except that if the outcome is ‘competition’, then the player i with

highest value obtains xi instead of h. Formally:

ui(p, p) = m and ui(ai, aj) =

{
xi if xi > xj

l if xi < xj
whenever (ai, aj) 6= (p, p)

T3. Identical to T1 except that the outcome is ‘compromise’ unless both players choose

s. Formally:

ui(ai, aj) = m whenever (ai, aj) 6= (s, s) and ui(s, s) =

{
h if xi > xj

l if xi < xj

T4. Identical to T1 except that players move sequentially.

T1 and T4 are the two variants studied in [CP]. They capture in a stylized way a large

range of situations, including war, litigation and market competition: nations, individuals

and firms can coexist peacefully, reach a settlement and share the market (both choose

p) or, instead, go to war, litigate and race to innovate (at least one chooses s). The

likelihood of obtaining the larger reward through competition hinges on factors that are

private information, such as the nations’ military capacity, the strength of the legal cases,

and the quality of firms. Furthermore, the compromise option requires mutual consent,

while the competitive option can be decided unilaterally, since it takes only one player to

initiate a conflict, a legal dispute, or an innovation race.

However, and as explored in the new variant T2, utilities may also depend on private

values. A solid litigation case may increase both the probability of winning and the dam-

ages awarded to the plaintiff. A top quality research department enhances the likelihood

of innovation and, if successful, also boosts profits. Possessing exceptional talent increases

both the probability of securing a promotion and the salary in the new role, etc.

Finally, and as modeled in the second new variant T3, compromise is sometimes the

default outcome which is overruled only if both players choose s. For example, in an

electoral campaign, a public debate is often used to reveal the relative quality of the

candidates, and therefore their chances of winning the election. However, a debate occurs

only if both contenders accept to participate. Analogously, in financial settings, a trade

occurs only if both parties agree.
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2.2 Equilibrium

Despite the simplicity of the game, the equilibrium solution is non-trivial. Proposition 1

summarizes the properties of the equilibrium in each variant Tk (k ∈ {1, 2, 3, 4}).

Proposition 1. The optimal strategy in Treatment Tk always involves a cutpoint: x∗Tk ∈
[x, x] such that a∗i (xi) = p if xi < x∗Tk and a∗i (xi) = s if xi ≥ x∗Tk.

The equilibrium cutpoint of both players varies across treatments: (i) x∗T1 = x∗T4 = x,

(ii) x∗T2 = m, and (iii) x∗T3 = x.

Proof. See Appendix B1. �

In all treatments, it is always optimal to best respond with a cutpoint strategy. The

reason is that a participant’s expected payoff increases more steeply with their private

value if they choose s than if they choose p.

However, subtle differences across treatments have dramatic consequences for equilib-

rium behavior. Indeed, depending on the rival’s choice, the action of a player is sometimes

inconsequential. Therefore, players must condition on the choice of the rival to compute

their optimal cutpoint. Because their action is relevant in different cases, the optimal

strategy depends on treatment specific features. More precisely, the equilibrium cutpoint

unravels downwards to x in T1 and T4, the treatments studied in [CP]. The equilibrium

cutpoint unravels downwards but only to m in T2 and it unravels upwards to x in T3.

Studying these different treatments allows us to determine whether individuals react to

elements of the environment.

Notice that, just like in the guessing game (Nagel, 1995), the equilibrium involves

playing a weakly dominated strategy (it is therefore a best response only to an individual

who also plays at equilibrium). Hence, we do not expect even the most sophisticated

participants to employ the equilibrium strategy. On the other hand, and as we will develop

below, we do expect sophisticated players to adapt their behavior to the treatment.

3 The experiment

3.1 Design

The paper studies the choices of children and teenagers in discrete versions of the four treat-

ments described in section 2.1. Working with young participants presents some method-

ological challenges. We follow the guidelines developed in Brocas and Carrillo (2020).
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Game. For simplicity, we modify the game outlined in section 2.1. Participants are

matched in pairs, and each pair is informed that there is a deck of 10 cards, numbered from

1 to 10. The computer assigns one card to each player, so that types are correlated and

ties are not possible. Participants only see their own card and must choose between “pass”

or “see.” This approach offers two main advantages compared to random and independent

draws (as, for example, in [CP]): it eliminates the possibility of ties and it is straightforward

to explain, suppressing the need to delve into distributional considerations.2

We employ the strategy method to elicit behavior. It is well-known that the strat-

egy method may be more challenging to understand and it may elicit different responses

compared to the direct-response method (Brandts and Charness, 2011). In our case, we

employ an elicitation strategy similar to the multiple price list method often adopted in

the literature to elicit risk preferences, time preferences and willingness to pay. More pre-

cisely, we tell our participants: “You are going to get a card. What do you want to do if

you get a 1? If you get a 2? ...” and so on. Questions are ordered from lowest to highest

value, and we do not impose any restriction on their strategy. This method allows us to

observe the strategy employed by individuals –for example, whether it involves using a

cutpoint (zero or one switch) or not (two or more switches)– instead of having to infer the

strategy from the choice. It is especially important if, as in our case, (i) we believe that

a non-negligible fraction of participants may not use a cutpoint strategy, (ii) we want to

learn what these other strategies are, and (iii) we want to examine age-related changes in

the fraction of individuals who use cutpoint strategies.3

We study the four treatments described in section 2.1 using a between-subject design.

We consider integer private values xi ∈ {1, 2, ..., 10}, and point payoffs h = 10, m = 5 and

l = 1. Adapting Proposition 1 to our discrete case with no ties, the equilibrium cutpoint

in each treatment is: x∗T1 = x∗T4 = 2, x∗T2 = 6 and x∗T3 = 10.4,5

One strength of the design is that the presentation, instructions, cognitive require-

2As discussed in Proposition 1, the equilibrium is unchanged if a participant misunderstands the in-
structions and believes that the two cards are drawn with replacement.

3Strategies could be estimated from choices using MLE methods. However, it would require large
amounts of data (hence, many choices) and an ex-ante knowledge of the set of possible strategies.

4With integer values of x and no ties, x∗T1 = x∗T4 = 1, x∗T2 = 5 and aT3(x) = p for all x are also
equilibria of the game, although they do not survive the Trembling Hand refinement. These details are
important for theory but have limited consequences for our experimental analysis.

5We deliberately chose values such that 2m < h+ l. It implies that colluding on playing ‘pass’ all the
time, decreases rather than increases the expected payoff of players.
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ments, and logical inferences are virtually indistinguishable across T1, T2 and T3. There-

fore, it is difficult to argue that differences in behavior among these treatments stem from

differences in understanding the rules. Conversely, T4 is cognitively more demanding

since we elicit two strategies –as the first and second mover, hereafter referred to as T4F

and T4S– and the latter is contingent on the first mover selecting a specific action (pass).

Therefore, it is prudent to approach comparisons between T1, T4F and T4S with caution.

Finally, we elicit player’s strategies twice, called the first and second decisions. Initially,

we request them to report a strategy to be employed in six consecutive matches against six

distinct opponents. We utilize the random draws (xi, xj) and present for each of the six

games the cards drawn by both players, the choices given their strategies, and the payoffs

given the rules of the treatment.6 We instruct participants to review and comprehend

the table, after which they select a new strategy to be used in six new matches against

six new opponents. Figure 1 presents screenshots of the strategy elicitation (left) and the

outcomes of the first six games (right) for T1 (with the text translated from the Spanish

version). In Appendix A1, we provide the full set of instructions.

Figure 1: Screenshots. Strategy elicitation (left) and summary of outcomes (right) in T1

Theory of mind. We conduct a novel, child-friendly version of an affective Theory-of-

mind (a-ToM) test. In our a-ToM task, participants observe images of a person’s eyes and

are tasked with selecting the most appropriate adjective from four options to describe the

conveyed emotion. We then examine the correlation between performance in the affective

and cognitive tasks. Further details about the task are presented in section 6.

6The strategies of other players are not shown (only their actions given the values drawn). This way,
we prevent participants from blindly mimicking someone else’s strategy.
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Timing. The experiment consists of four tasks programmed in ‘oTree’ (Chen et al.,

2016) and implemented on PC tablets. Due to the challenge of accessing such a large popu-

lation of children, we combined two projects. We started with a third-party dictator game,

the results of which are analyzed in (Brañas-Garza et al., 2024). After a break, we adminis-

tered the game under study here, followed by the affective theory-of-mind task. We finished

with a Big Five personality questionnaire, which was designed to complement the dictator

game. All tasks were incentivized, except for the personality questionnaire. While the two

games exhibit sufficient differences to mitigate concerns about cross-contamination, we

took precautionary measures to ensure experimental integrity. We always conducted the

dictator game first followed by the game under investigation, and employed random and

anonymous subject re-matching between the two. Most importantly, we did not announce

the results of the dictator game until the end of the experiment.

Population and procedures A strength of this study lies in its extensive age range and

large sample size, particularly noteworthy for a lab-in-the-field experiment. We recruited

1662 school-age students from low- to middle-income families, covering the Spanish equiv-

alent of grades 3 to 12 in the US educational system. We conducted this study across four

schools situated in four distinct cities in the south of Spain. All schools are part of the

Salesianos, a private network of catholic schools.7 Given that the oldest participants are

young adults close to their prime cognitive ability (18 years old), we decided not to include

a an undergraduate control group, who would only be slightly older (18 to 22 years old)

and possess a distinct background. We counterbalanced the assignment of participants to

treatments. Table 1 summarizes the participants by grade (age) and treatment.

Grade 3 4 5 6 7 8 9 10 11 12 Total
Age 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18

T1 47 34 45 24 55 30 50 25 23 43 376
T2 43 33 25 44 27 49 63 41 52 20 397
T3 32 43 49 48 59 52 23 46 29 57 438
T4 35 47 43 44 59 57 39 48 53 26 451

Total 157 157 162 160 200 188 175 160 157 146 1662

Table 1: Number of participants by grade (age) and treatment

7The Salesianos is a missionary school system with presence in 132 countries. It is heavily subsidized by
the Spanish government and provides free education. Schools are typically located in low to middle income
neighborhoods, and they are particularly attractive to families with low to middle SES. This network has
59 schools in Spain alone serving almost 40,000 students (see https://www.salesianos.es/escuelas).
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We visited each school and conducted the experiment one class at a time, using a

portable lab. Participants were organized into subgroups of 8 to 12 individuals, each led

by one experimenter. The experiment was integrated into the school’s academic activities,

and our Institutional Review Board stipulated an opt-out procedure. Importantly, no

children opted out, thereby eliminating any potential selection bias. Only children who

were absent on the day of the experiment did not participate. The overall participation

rate stood at 92%. For visual clarity and to enhance statistical power, we grouped two

consecutive grades together, which we refer to as “grade groups” (e.g., 3-4, 5-6, etc.). For

the regression analysis, we use instead the age (in months) of the participant.

Payments and duration. Finding a single medium of payment that can provide compa-

rable incentives to participants of varying ages can be challenging. As outlined in Brocas

and Carrillo (2020), an appropriate approach may involve distinct payment mediums tai-

lored to different grades. However, for this particular experiment, we capitalized on the

presence of integrated cafeterias and the unique opportunity to use food as an accepted

form of payment (an option forbidden in most schools). We introduced our own currency

that participants could use in the cafeteria to purchase food, drinks, and snacks of their

choice. The cafeteria offers affordable options (e.g., a large steak sandwich for 1.80e),

is highly popular, and widely accessible during recess and lunchtime. Our currency had

no expiration date, although the majority of participants spent their endowments within

a week. The tasks examined in this paper had a duration of approximately 25 minutes,

and the entire experiment never exceeded the length of one standard school period (50

minutes). Participants earned 0.05e for each point acquired in this game. The average

payoff was 3.23e in the game studied here, 1.16e in the a-ToM task and 4.00e in the

dictator game, for a total of 8.39e.

3.2 Why this experiment?

This study leverages three novel features to examine behavior in games with two-sided

private information. Here, we address how each feature provides unique insights.

Multiple treatments. [CP] demonstrates that the behavior of adults is consistent with

cutpoint strategies. While it rarely adheres to equilibrium, a significant fraction of strate-

gies are close to best responding to the rival’s behavior. Since [CP] focuses on two treat-

ments that predict the same equilibrium (T1 and T4), it is not possible to determine
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whether participants realize that they must condition only on the cases where their action

is relevant in order to determine their optimal strategy. To investigate this phenomenon,

it is crucial to compare across treatments that exhibit different unraveling properties and

therefore different equilibria. By introducing T2 and T3, we can evaluate if participants

are responsive to the unique incentives of each treatment and adjust their strategies in the

direction predicted both by theory and by empirical payoff maximization.

Developmental approach. Games of strategy represent intricate cognitive tasks that rely

on a combination of logical and social skills. These foundational abilities undergo gradual

and distinct processes during childhood and adolescence. Therefore, the developmental

path of behavior in strategic games is influenced by the timing of these skill developments.

Among games of strategy, incomplete information is arguably the characteristic most

closely related to cognitive theory-of-mind (c-ToM), defined as the ability (i) to recognize

that other people have distinct beliefs and (ii) to infer and predict behaviors based on

those beliefs. Taking a developmental perspective in a game characterized by hierarchical

degrees of rationality allows us to discern which facets of c-ToM are mastered at different

ages, and which abilities never fully mature.

Affective mechanisms. Having established the importance of c-ToM in games with two-

sided private information, we ponder if this skill is linked to affective theory of mind (a-

ToM), the ability to recognize and empathize with the emotions of others. By correlating

performance between our game and an emotional intelligence task, we ascertain whether

and to what extent affective faculties also contribute to performance in complex strategic

environments.

3.3 Hypotheses

A notable feature of our game is that behavior can be categorized into hierarchical degrees

of rationality. At its fundamental level lies choice monotonicity: in all treatments, the

likelihood of playing “see” in a grade group should increase as the private value rises. In an

intermediate level is strategic consistency: individuals should employ cutpoint strategies,

again in all treatments. Finally, the highest level of sophistication prescribes environmental

variability: the optimal cutpoint should be contingent on the game’s structure. Given

the large range of ages in our sample, we have the opportunity to identify the age at

which participants’ behavior aligns with each degree of rationality. We put forth several
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hypotheses concerning the age-related shifts in behavior.

Hypothesis 1. ‘Choice monotonicity’ is satisfied in the entire population: the aggregate

probability of choosing ‘see’ is increasing in x in all grade groups.

Hypothesis 2. ‘Strategic consistency’ improves with age. Also, the fraction of partici-

pants who use a cutpoint strategy is small (but significantly above zero) among the youngest

and high (but significantly below one) among the oldest.

Hypothesis 3. ‘Environmental variability’ is satisfied by all participants who adhere to

strategic consistency. Formally, the empirical distributions of cutpoints in the simultaneous

treatments can be ranked according to theory: F (x∗T3) F.O.S.D. F (x∗T2) F.O.S.D. F (x∗T1).

According to Hypothesis 1, we anticipate that all participants, including the youngest

ones, will grasp the fundamental principles of the game and choose “see” more frequently

as their value xi increases. If this hypothesis holds true, it suggests that the foundational

yet non-trivial principles of the game, linking actions to information, can be understood

at an early age. Hypothesis 2 implies that young children may struggle to recognize the

optimality of a cutpoint strategy. As they develop, the prevalence of this crucial aspect

of optimal decision-making is expected to increase, although this improvement might be

gradual and incomplete. In essence, we expect this property to be neither insurmountable

for our younger participants nor trivial for our older ones. In accordance with Hypoth-

esis 3, our more cognitively developed participants (those employing cutpoint strategies)

are likely to grasp the intricacies of the treatment assigned to them. Consequently, we

should observe a shift in cutpoints across treatments as they adapt to each scenario.

In addition to examining the developmental aspects of decision-making, our experiment

also explores the interplay between cognitive and affective theory of mind.

Hypothesis 4. Participants with higher affective theory of mind understand the strategic

aspects of the game better: they use cutpoint strategies more often and reach higher payoffs.

Hypothesis 4 posits that the ability to read others’ emotions is connected to the ability

to infer their intentions, a pivotal aspect of strategic decision-making. A more detailed

motivation for this hypothesis is provided in section 6.
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4 Aggregate analysis

In our initial data analysis, we report for each treatment and each grade group the average

probability of seeking the competition outcome (choose s) as a function of the private value

x (∈ {1, ..., 10}). We denote this probability S(x). Results are presented in Figure 2.
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Figure 2: Average probability of choosing to see (S(x)) by treatment and grade group

Strongly supporting Hypothesis 1, we observe a monotonic increase in the probability

of choosing s as the private value increases. This trend holds true across all treatments

and grade groups. Specifically, when x = 1, the probability (S(1)) tends to hover around

or fall below 0.25, while at x = 10, it typically reaches or exceeds 0.75. The increase with
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x is often steep, although this pattern does exhibit some variation across grade groups,

as we will elaborate on shortly. Overall, despite the young age of some participants and

the complexity of contingent reasoning, a majority of them appear to understand the

fundamental relationship between own information and own action.

To study in more detail the sensitivity of s to private value across different grade

groups, we perform Probit regressions. Our unit of observation is the participant’s action

(see = 1). We conduct the regressions separately for each treatment. In our regressions,

the independent variables are the private value (x), the participant’s age in months (Age),

an interaction term between the two included in some regressions (x×Age), a dummy

indicating gender (Male = 1) and a dummy representing the second decision (2ndDec

= 1). For T4, we also include a dummy to account for being the second mover (T4S = 1).

Unless otherwise noted, all regressions incorporate school fixed effects and standard errors

are clustered at the individual level. Results are presented in Table 2.

T1 T2 T3 T4
(1) (2) (3) (4) (5) (6) (7) (8)

x 0.240∗∗∗ -0.050 0.213∗∗∗ 0.080 0.212∗∗∗ -0.053 0.181∗∗∗ -0.126∗∗∗

(0.013) (0.056) (0.012) (0.053) (0.011) (0.050) (0.009) (0.041)
Age 0.004 -0.010∗∗∗ -0.004∗∗∗ -0.009∗∗∗ -0.001∗ -0.011∗∗∗ -0.003∗∗∗ -0.014∗∗∗

(0.0009) (0.002) (0.0008) (0.002) (0.0008) (0.002) (0.0008) (0.002)
x×Age — 0.002∗∗∗ — 0.0008∗∗ — 0.002∗∗∗ — 0.002∗∗∗

(0.0004) (0.0003) (0.0003) (0.0003)
Male 0.081 0.085∗ 0.033 0.033 -0.042 -0.043 -0.007 0.003

(0.050) (0.050) (0.051) (0.051) (0.046) (0.047) (0.044) (0.045)
2ndDec. 0.082∗∗∗ 0.087∗∗ 0.075∗∗∗ 0.076∗∗∗ 0.086∗∗∗ 0.090∗∗∗ 0.042∗∗ 0.044∗∗

(0.030) (0.031) (0.026) (0.026) (0.028) (0.029) (0.021) (0.022)
T4S — — — — — — 0.044∗∗ 0.046∗∗

(0.021) (0.022)

Obs. 7,520 7,520 7,940 7,940 8,760 8,760 18,040 18,040
Pseudo R2 0.185 0.197 0.157 0.159 0.152 0.163 0.121 0.134

Significance levels: ∗∗∗ = 0.01, ∗∗ = 0.05, ∗ = 0.1

Table 2: Probit regression of decision to choose s by treatment

The regressions results validate the patterns observed in Figure 2. From the regressions

without interaction terms (columns (1), (3), (5), (7)), we notice that as the private value x

increases, the likelihood of playing ‘see’ also increases across all treatments. On the other

hand, age by itself has no significant effect. Adding the interaction term (columns (2), (4),

(6), (8)) reveals that the absence of an age effect is due to the fact that older participants
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are less likely to choose s for the lowest values of x but they are more reactive to an increase

in that parameter (adding a quadratic age term did not improve the fit). The increased

sensitivity to changes in x is highly statistically significant across all treatments (albeit

slightly smaller in magnitude in T2). In other words, older players demonstrate a better

grasp of the empirical advantages of choosing s for high values of x and p for low values

of x. Additionally, the likelihood of selecting ‘see’ is marginally higher among males in

T1, among participants making their second decision in all treatments, and among second

movers in the sequential treatment. Finally, Table 2 reveals an increased inclination to

choose ‘see’ in the second decision (2ndDec).

In Appendix B2, we investigate the changes between first and second decision. The

analysis confirms only a modest increase in s. Importantly, changes are not the result of

participants learning how to best respond or play at equilibrium, as they often contradict

both predictions. Indeed, the increase in s is most noticeable in T3 (where theory predicts

the opposite) and for low values of x (where it is empirically unlikely to be advantageous).

Given the absence of systematic differences, we will combine data from both decisions for

the remainder of the paper, unless otherwise specified. In Appendix B3, we further study

the sensitivity of actions to private values and confirm that older players change their

behavior more drastically than their younger peers.

The findings of this section are summarized as follows.

Result 1. Hypothesis 1 is supported by the data. Choice monotonicity (S(x) increasing

in x) is satisfied across all grade groups. At the same time, the sensitivity to private value

is more pronounced among older individuals.

5 Individual behavior

5.1 Individual strategies

We next examine the strategies adopted by participants at different ages. We categorize

strategies into different classes and calculate the proportion of participants who adhere to

each. To mitigate this risk of overlooking certain strategies, we contemplate a very large

set of options, even including some unconventional strategies that may be suboptimal

and/or unexpected. Table 3 provides a description of all the strategies considered.

This set of strategies encompasses a wide range of options spanning from strategies

that satisfy strategic consistency (aP, aS, C0) or almost satisfy it (C1) to fully suboptimal
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strategy description

aP Always pass (ai(x) = p for all x)
aS Always see (ai(x) = s for all x)
C0 (Interior) cutpoint (ai(1) = p, ai(10) = s and exactly one switch)
C1 (Interior) cutpoint with one “mistake” (it becomes C0 if we reverse one choice)

RC0 Reverse (interior) cutpoint (ai(1) = s, ai(10) = p and exactly one switch)
RC1 Reverse (interior) cutpoint with one “mistake”

INT0 Three intervals (ai(1) = ai(10) and exactly two switches)
INT1 Three intervals with one “mistake”

ALT0 Perfect alternation p and s (ai(x) 6= ai(x+ 1))
ALT1 Almost perfect alternation p and s (at least four separate groups of consecutive s)
PAT Patterns that are recognizable but different from ALT0 and ALT1

∗

Other Behavior not covered by any of the above strategies
∗ Patterns: (i) 2-2 alternation (e.g., (p, p, s, s, p, p, s, s, p, p)); (ii) 2-1 alternation (e.g., (p, s, s, p, s, s, p, s, s, p));
(iii) symmetric strategies below x = 5 and above x = 5 (e.g., (p, s, s, p, p, p, p, s, s, p)); and (iv) strategies that
are repeated for x below 5 and x above 5 (e.g., (p, p, s, s, s, p, p, s, s, s)).

Table 3: Individual strategies

ones (RC0, RC1).
8 It also includes strategies that fall in between (INT0, INT1), as well as

some unconventional or “pleasant” patterns (ALT0, ALT1, PAT) that cannot be readily

reconciled with any reasonable theory.

We categorized behavior into these strategies, prioritizing classification in the order

presented in Table 3 (for example, if a strategy is consistent with both C1 and INT0, we

classify it as C1). We found that only 1.9% of observations match RC0 and RC1, 2.0%

match INT0 and INT1, and 1.5% match PAT, so we decided not to retain these strategies.

For visual ease, we grouped ALT0 and ALT1 under a single category, called ALT. This

leaves us with a total of six strategies: aP, aS, C0, C1, ALT and Other (for the remaining

participants). Figure 3 reports the empirical frequency of each strategy separated by

treatment, grade group, and decision.

The distribution of strategies is similar between T1, T2 and T3, as shown in Fig-

ure 3(A), although a paired χ2-test of differences of proportion finds a difference between

T2 and T3, p < 0.01. The sequential treatment is different than all the simultaneous

ones (χ2-test, p < 0.01), mainly due to a higher frequency of aP at the expense of C0. By

contrast, differences between T4F and T4S are not significant (χ2-test, p = 0.51). More

8In our analysis, we take a cautious approach and refer to aP and aS as “boundary cutpoint strategies.”
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Figure 3: Individual strategies by treatment (A), grade group (B) and decision (C)

generally, let us call C+ = aP + aS + C0 the set of cutpoint strategies that perfectly align

with an interior (C0) or a boundary (aP + aS) cutpoint. More than half the observations

in all treatments are classified as C+. At the same time, there is also a significant fraction

of alternation (12% to 16%) and unclassified (24% to 26%) strategies.

By contrast, strategies change very significantly across grade groups, as evident in

Figure 3(B) (paired χ2-tests, p < 0.02). In strong support of Hypothesis 2, strategic

consistency increases steadily and very significantly with age. For example, C0 changes

from 31% in 3-4 to 68% in 11-12. At the same time, the level of strategic consistency

is higher than initially anticipated. We hypothesized few cutpoint strategies among our

youngest participants, and yet 46% of children in grades 3-4 align with C+.9 Finally,

differences between first and second decision are very minor, albeit statistically significant

(χ2-test, p < 0.01), see Figure 3(C). We observe a slight increase in mistakes among

interior cutpoint strategies (from C0 to C1) and also a small increase in aS.

5.2 Cutpoint strategies across ages and decisions

To further investigate the decision to use cutpoint strategies across ages, we perform a

simple Probit regression for each treatment. In this regression, the dependent variable is

whether the choice aligns with a perfect boundary or interior cutpoint strategy (C+). The

9To put it in perspective, educated adults in much simpler settings (e.g., elicitation of risk preferences
using multiple price lists) exhibit multiple switches 15%-20% of the time.
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results are presented in Table 4.10

T1 T2 T3 T4
(1) (2) (3) (4)

Age 0.005∗∗∗ 0.003 0.007∗∗∗ 0.010∗∗∗

(0.002) (0.002) (0.002) (0.002)
Male 0.267∗∗ 0.214∗ 0.442∗∗∗ 0.064

(0.116) (0.115) (0.108) (0.102)
2ndDec. -0.013 -0.241∗∗∗ 0.127∗∗ -0.054

(0.066) (0.057) (0.062) (0.052)
T4S — — — -0.025

(0.035)

Obs. 752 794 876 1,804
Pseudo R2 0.043 0.030 0.056 0.089

Significance levels: ∗∗∗ = 0.01, ∗∗ = 0.05, ∗ = 0.1

Table 4: Probit regression of adherence to cutpoint strategy C+ by treatment

In support of Hypothesis 2 and in line with previous findings, we observe a rise in the

likelihood of adopting a cutpoint strategy with age, although the effect is not statistically

significant in T2. We notice that males are more likely to use cutpoint strategies. This

effect of gender will be explored further in section 6.3. We also observe a difference

between the first and second decisions. However, the sign changes across treatments,

further supporting our observation that there are no consistent learning patterns.

Finally, in Appendix B4, we perform a Probit regression similar to the one in Table 2,

where we divide the sample into individuals who use perfect cutpoint strategies and those

who do not. We show that the sensitivity to information of individuals who use cutpoint

strategies is high and relatively constant across age whereas that of individuals who do

not employ cutpoint strategies is low and increasing with age. We also conduct a basic

analysis of changes in strategies across decisions and show that strategic consistency is

equally likely to increase than to decrease between the first and second decision.

We summarize the main finding of sections 5.1 and 5.2 as follows.

Result 2. Hypothesis 2 is supported by the data. Strategic consistency increases mono-

tonically with age. Nevertheless, the fraction of individuals who use cutpoint strategies is

higher for all ages than initially anticipated.

10We obtain very similar results both if we add C1 to the set of cutpoint strategies, as well as if we only
consider C0 the interior cutpoint strategies.
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5.3 Cutpoint strategies across treatments

We next focus on choices that align perfectly with interior or boundary cutpoint strategies

(C+), and hypothesize that participants adhering to strategic consistency will conform to

environmental variability. In other words, the ordering of cutpoints across treatments

predicted by theory will, in a stochastic sense, be preserved in our sample. To test this

hypothesis, we construct the same function as in Figure 2 but only with players who employ

cutpoint strategies C+. We denote this function as Sc(x). This time, Sc(x + 1) ≥ Sc(x)

by construction. Figure 4 presents the functions Sc(x) for the simultaneous (top) and

sequential (bottom) treatments, separated by grade group and combining all (All).
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Figure 4: Comparison of Sc(x) across treatments for each grade group

There is large heterogeneity in cutpoints. Only a few cutpoints are at the boundaries,

with the majority (60% to 72%) falling between x∗ = 5 and x∗ = 8. Most importantly,

we do not observe the differences we expected between T1, T2 and T3. A Kolmogorov-
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Smirnov (KS) test of differences between distributions reveals that the two supposedly

most extreme treatments, T1 and T3, are statistically different for grade group 3-4 (p

= 0.04), with the sign in the opposite direction of the theoretical prediction. In grade group

11-12, ‘see’ is more frequent in T1 than in T2 as predicted by theory (KS-test, p < 0.01)

but it is also more frequent in T3 than in T2, contrary to the theory (KS-test, p < 0.01).

All other differences are not significant.11 Overall, Hypothesis 3 is strongly rejected:

distributional differences in cutpoints between T1, T2 and T3 are small and inconsistent.

The importance of conditioning on the rival’s choice of p in T1 and s in T3—the critical

aspect to the downward and upward unraveling dynamics—is apparently not grasped by

any group, including our oldest and arguably most sophisticated participants.

As for the sequential treatment, contrary to [CP], we do not find any significant differ-

ences between first and second movers in any grade group (KS-test, p > 0.25). However,

[CP] argue that second movers choose s more often than first movers because they observe

their rival’s decision, make inferences about their information, and react accordingly. This

reasoning is only possible under the direct response method. In the strategy method, both

first and second movers engage in similar contingent reasoning, as they are asked to pro-

vide their strategies in advance. Consequently, it is reasonable that their decisions are also

similar. Appendix B5 compares the choices of participants as first and second movers. It

shows that changes are more frequent for younger participants and for intermediate private

values. The results of this section are summarized as follows.

Result 3. Hypothesis 3 is strongly rejected by the data. Environmental variability (which

would manifest as distributional differences in cutpoints between T1, T2 and T3) is not

observed in our population, even in the subset of our oldest, strategically consistent players.

5.4 Understanding deviations

5.4.1 Best response to empirical behavior

A potential explanation for the lack of environmental variability could be that the em-

pirical best response to the behavior of rivals in the same grade group is the same across

treatments. To study this possibility, we compute the cutpoint x̃ that maximizes the em-

pirical expected payoff for each grade group and treatment (for T4, we determine the best

11If we include all participants (not only those satisfying strategic consistency), differences in S(x) across
treatments are still not significant (data omitted for brevity).
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response of a first (second) mover to the empirical behavior of second (first) movers). We

also determine the optimal cutpoint with pooled data (all). For comparison, we report the

theoretical equilibrium (theory) computed in section 3. Results are compiled in Table 5.

Grade group 3-4 5-6 7-8 9-10 11-12 all theory

T1 4 4 4 4 4 4 1-2
T2 7 7 7 7 7 7 5-6
T3 7 7 8 8 8 7 10
T4F 5 4 5 4 4 4 1-2
T4S 4 4 5 4 4 4 1-2

Table 5: Optimal empirical cutpoint x̃ by grade group and treatment

The empirical best response cutpoint x̃ is never at the boundary but it approximately

preserves the same order across treatments as the equilibrium cutpoint x∗: x̃T1 < x̃T2 ≤
x̃T3 and x̃T1 ' x̃T4F ' x̃T4S, with the exception that the best response is similar in T2

and T3. This is an important finding. It implies that the absence of significant differences

in choices across treatments, especially between the polar cases T1 and T3, cannot be

attributed to individuals understanding the deviations of their less sophisticated peers and

best responding to it. The result is also natural. Variations in treatment design (upward

vs. downward unraveling) imply differences in best response strategies across treatments,

even when the empirical behavior of rivals is similar.

5.4.2 Empirical loss

Another possible reason for the lack of environmental variability could be that deviations

from the empirically optimal strategy result in losses that are insignificant. This is a

critical issue because, if that were true, deviations could be attributed to an efficient

conservation of cognitive effort. To address this issue, we calculate for each strategy type

the revenue loss relative to selecting the empirically optimal cutpoint within their grade

group, as determined in Table 5. Figure 5 illustrates this information for each treatment,

with error bars representing 2 standard errors of the mean.

The largest losses are incurred when the individual chooses the boundary cutpoint

opposite to the theoretical prediction: aP in T1, T4F and T4S and aS in T3. Both aP

and aS are suboptimal when theory prescribes an intermediate cutpoint (T2). In general,

individuals who do not use cutpoint strategies (ALT and Other) experience at least twice
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Figure 5: Empirical loss as a function of strategy

the revenue loss compared to those who utilize interior cutpoint strategies. The difference

is similar across grades (data not reported for brevity). It is also substantial, especially

considering that (i) the decision of a participant is often inconsequential due to the rival’s

behavior, and (ii) random behavior aligns with the optimal decision one-half of the time.

All in all, neglecting environmental variability results in significant losses and cannot

be explained by a best response behavior to others: it is likely due to the cognitive difficulty

of updating beliefs based on the rival’s choice.

6 Cognitive and affective theory-of-mind

6.1 Measuring and evaluating theory-of-mind

“Theory of mind” encompasses the overarching idea of mentalizing about others. Cognitive

theory of mind (c-ToM) centers on cognitive processes whereas affective theory of mind

(a-ToM) involves empathizing with emotions, a concept closely tied emotional intelligence.

Traditionally, c-ToM tests have relied on false belief tasks (Wellman et al., 2001),

which gauge an individual’s ability to grasp that another person may hold beliefs that

differ from reality.12 Most children grasp the basic concept of false belief by age 4 or 5. To

adapt the task to older participants, false belief tasks rely on complex narratives featuring

numerous characters, objects, and locations that participants must track throughout the

storyline (Kinderman et al., 1998; Valle et al., 2015). Consequently, these tasks necessitate

12In the simplest example, the participant is shown a person observing the placement of an object. When
the person leaves the room, the object is displaced. The participant is then asked where they think the
person believes the object is after coming back into the room (Wimmer and Perner, 1983).
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participants to store and manipulate large amounts of information, placing a strain on

working memory and concentration ability, two cognitive resources that supports but do

not equate to reasoning ability.

We argue that a game of incomplete information is a better tool to measure c-ToM. As

in false belief tasks, individuals must establish connections between actions of others and

the information they possess. Furthermore, game theoretic paradigms align more closely

with real-world scenarios and are better equipped to isolate deficiencies in mentalizing

about others rather than deficits in comprehension or computation. Finally, our game

contains multiple dimensions of cognitive ability that can be measured, such as sensitivity

of s to private value, likelihood of choosing a cutpoint strategy, and payoffs obtained.

As for a-ToM, it is commonly evaluated using the “Read the Mind in the Eyes Task”

(RMET, Baron-Cohen et al. (1997)), a task where participants view images of a person’s

eyes and are required to select the most appropriate adjective to describe the emotion

conveyed. The RMET has been widely used in research on social cognition. The ability

develops gradually and reaches maturity by adolescence (Moor et al., 2012).

The relationship between a-ToM and c-ToM is not established but there are com-

pelling reasons to believe in their interrelation. First, individuals with autism exhibit

poor performance in both tasks. Second, there is preliminary evidence suggesting a pos-

itive association between proficiency in a-ToM tasks and fluid intelligence, as gauged by

IQ tests (Baker et al., 2014). Third, recent research has revealed that both c-ToM and

a-ToM are mediated by a shared network of brain regions referred to as the default mode

network. This network typically handles processes related to understanding the thoughts

and feelings of others and links up with regions responsible for emotional processing and

cognition (Smallwood et al., 2021). The coexistence of both a-ToM and c-ToM within a

single network implies that these two facets of theory of mind may have evolved to address

interconnected social and cognitive challenges.

In this section, we test the idea that affective processing plays a crucial role in strategic

thinking (Hypothesis 4). Specifically, we investigate the potential relationship between a-

ToM and c-ToM abilities by examining whether participants who excel in our game also

demonstrate a heightened ability to decipher emotions.

23



6.2 Testing affective theory of mind

The original RMET was designed to study a-ToM in adults. The emotions sometimes

involve complex nuances (“suspicious”, “thoughtful”) and are expressed in a complicated

language (“flustered”, “skeptical”). The existing adaptations for children and adolescents

have been limited to reducing the number of trials (Baron-Cohen et al., 2001), which we

find unsatisfactory for the reasons detailed below. We therefore decided to adapt and

validate a novel, child-friendly version of RMET with 16 images of the eyes of the same 12

years old child expressing different emotions, which we called the “Developmental Read the

Mind in the Eyes Task” (DeRMET).13 For each image, we provided four answers, one of

which best captured the emotion. Participants were incentivized, earning 0.10e for every

correct response. In Figure 6, we present one example (73% of the population provided

the correct answer, namely “disgusted”). Detailed instructions, including the complete set

of images, possible responses, correct answers, and percentage of participants who chose

correctly each of them are available in Appendix A2.

Figure 6: An example of an image and the four possible answers in the DeRMET

Compared to the original task, there are three advantages in using our version. By

sourcing all images from a single individual, we make it more consistent. By using a child as

a model, we make the images more relatable to young participants. By focusing on simpler

emotions and using a straightforward language, we make the same task suitable for any age,

from very young participants to adults. In Appendix B6, we provide aggregate statistics

of performance in DeRMET. In the next section, we use the individual performance in

this task as an input to explain behavior in the game.

13For its validation, we enlisted 43 teenagers and adults from different countries who were asked to
identify emotions in 20 original images and to provide feedback on the difficulty of identifying these
emotions. We then removed four emotions that participants found too difficult. The task and validation
materials were registered with the Open Science Framework to ensure transparency and accessibility.
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6.3 Affective Theory of Mind and optimal decision-making

To examine the link between a-ToM and c-ToM, we perform the same Probit regressions

as in Tables 2 and 4 (likelihood of choosing s and C+), but we now include performance in

a-Tom as an additional independent variable. We also conduct OLS regressions to study

the expected loss of an individual (relative to best responding to the empirical behavior

of others in their grade group and treatment) as a function of the previous variables,

including performance in a-ToM. The OLS regressions are performed both in the entire

sample and in the subset of individuals who employ cutpoint strategies. We pool together

all the information, with treatment dummy variables. The results are compiled in Table 6.

Columns 1-2-3-4 report the regressions when we consider absolute performance in a-ToM

(abs-ToM ) while columns 5-6-7-8 report the same regressions when a-ToM is normalized

to the behavior of other participants in their own grade (norm-ToM ).

The results unambiguously indicate a strong, positive and robust link between a-ToM

and different measures of strategic thinking. Individuals with high performance in a-ToM

are more likely to pass for small values of x, more reactive to increases in x (columns (1) and

(5)) and more likely to adopt cutpoint strategies (columns (2) and (6)) than participants

with low performance in a-ToM. Effects are highly significant and complementary to the

effect of age. Performance in a-ToM is also associated with lower losses unconditional

(columns (3) and (7)) or conditional on using cutpoint strategies (columns (4) and (8)).14

The results are very similar whether a-ToM performance is absolute (abs-ToM ) or relative

to other participants in their grade (norm-ToM ).

As notice earlier, males adopt cutpoint strategies more often than females in their

grade group and, consequently, achieve higher payoffs. This goes against our previous

findings in a backward induction game, where females outperformed males (Brocas and

Carrillo, 2021). However, participants in the two studies come from different schools with

distinct demographics and cultures, which may account for the differences.

Result 4. Hypothesis 4 is strongly supported by the data. There is a strong positive corre-

lation between strategic thinking (reacting to value, adopting a cutpoint strategy, obtaining

a high payoff) and affective theory of mind.

14High and low a-ToM players who use cutpoint strategies set similar cutpoints on average (5.86 v. 5.84)
but the former are more likely to concentrate them in intermediate values (standard deviation of 2.33 v.
2.65), which is typically a best response to the behavior of others (see section 5.4.1).
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Probit Probit OLS OLS Probit Probit OLS OLS

(1) (2) (3) (4) (5) (6) (7) (8)

S(x) C+ Loss Loss |C+ S(x) C+ Loss Loss |C+

Age -0.010∗∗∗ 0.006∗∗∗ 0.0005∗ 0.002∗∗∗ -0.011∗∗∗ 0.006∗∗∗ 0.0001 0.001∗∗∗

(0.001) (0.0009) (0.0003) (0.0004) (0.0010) (0.0009) (0.0003) (0.0004)
x -0.103∗∗∗ — — — -0.043∗ — — —

(0.029) (0.024)
x×Age 0.001∗∗∗ — — — 0.002∗∗∗ — — —

(0.0002) (0.0002)
abs-ToM -0.709∗∗∗ 0.528∗∗ -0.241∗∗∗ -0.361∗∗∗ — — — —

(0.233) (0.216) (0.068) (0.105)
x× abs-Tom 0.125∗∗∗ — — — — — — —

(0.039)
norm-ToM — — — — -0.093∗∗∗ 0.101∗∗∗ -0.027∗∗∗ -0.033∗∗

(0.033) (0.029) (0.009) (0.014)
x×norm-Tom — — — — 0.015∗∗∗ — — —

(0.006)
Male 0.010 0.187∗∗∗ -0.048∗∗∗ -0.023 0.007 0.198∗∗∗ -0.047∗∗∗ -0.019

(0.027) (0.059) (0.018) (0.025) (0.027) (0.059) (0.018) (0.025)
2ndDec. 0.070∗∗∗ -0.040 0.015∗∗ 0.012 0.070∗∗∗ -0.040 0.015∗∗ 0.012

(0.014) (0.031) (0.008) (0.012) (0.014) (0.031) (0.008) (0.012)
T2 -0.072∗∗ -0.012 -0.103∗∗∗ -0.169∗∗∗ -0.073∗∗ -0.008 -0.104∗∗∗ -0.167∗∗∗

(0.037) (0.087) (0.024) (0.027) (0.037) (0.087) (0.024) (0.028)
T3 0.026 -0.054 -0.147∗∗∗ -0.181 ∗∗∗ 0.025 -0.045 -0.149∗∗∗ -0.182∗∗∗

(0.034) (0.079) (0.021) (0.025) (0.034) (0.080) (0.021) (0.025)
T4F -0.168∗∗∗ -0.036 0.118∗∗∗ 0.164∗∗∗ -0.168∗∗∗ -0.031 0.117∗∗∗ 0.165∗∗∗

(0.036) (0.080) (0.024) (0.034) (0.036) (0.080) (0.024) (0.035)
T4S -0.109∗∗∗ -0.071 0.152∗∗∗ 0.166∗∗∗ -0.109∗∗∗ -0.066 0.150∗∗∗ 0.166∗∗∗

(0.037) (0.080) (0.025) (0.036) (0.037) (0.080) (0.025) (0.036)

Obs. 39,960 3,996 3,996 2,184 39,960 3,996 3,996 2,184
Pseudo R2 0.156 0.045 0.117 0.189 0.155 0.047 0.114 0.181

Significance levels: ∗∗∗ = 0.01, ∗∗ = 0.05, ∗ = 0.1

Table 6: Regressions to evaluate the effect of the a-ToM task

7 A behavioral theory

Since departures from Nash equilibrium are significant and costly (section 5.4), it is natural

to wonder if a behavioral theory could successfully explain the behavior of our participants.

A first natural candidate would be a model of social preferences. However, with the pa-

rameters of our experiment, seeking the compromise outcome would require high levels of

social preferences.15 Also, even participants with these preferences should seek the com-

petition outcome when assessing the overall earnings accrued throughout the experiment,

rather than focusing on the payoff of each game separately (if participants choose always

s, the average payoff is (h + l)/2 > m for all players). Finally, an individual with so-

15For example, Fehr and Schmidt (1999)’s inequality aversion model would require β > 5/9 for partici-
pants to deviate from the behavior predicted by the standard theory.
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cial concerns will always adopt a boundary cutpoint strategy (aP or aS), so these models

cannot effectively predict the observed interior cutpoints.

7.1 α-cursed equilibrium: theory

We decided to study instead α-cursed equilibrium (α-CE). It is a behavioral theory based

on an imperfect understanding of the relationship between information and action (Eyster

and Rabin, 2005), that has been successful at explaining deviations in games of asymmetric

information. Formally, in α-CE, individuals believe that the actions of opponents depend

on their information with probability (1 − α) and are independent of their information

with probability α. Thus, α = 0 corresponds to Bayesian Nash Equilibrium and α = 1

is the polar case where individuals do not make any inferences from the rival’s actions.

Denoting xαTk the equilibrium cutpoint in treatment k under α-CE, the main properties

of α-CE are (see Appendix B7 for the formal derivation):

(i) xαT1 = l, xαT2 = m and xαT3 = h when α = 0.

(ii) xαT1 = m, xαT2 ∈ (m,h) and xαT3 = m when α = 1.

(iii)
∂xαT1
∂α ≥ 0,

∂xαT2
∂α ≥ 0 and

∂xαT3
∂α ≤ 0.

(iv) xαT1 = xαT4F = xαT4S for all α.

(i) holds by construction. (ii) states that fully cursed players set interior cutpoints,

with identical choices in T1 and T3. (iii) is arguably the most robust and interesting

property, as it says that the amount of unraveling is inversely related to cursedness. (iv)

implies that timing does not affect the equilibrium.

7.2 α-cursed equilibrium: estimation

We conduct a structural estimation of a two-parameter (α, λ) Behavioral Random Utility

Model (BRUM), where α captures the cursedness of the population and λ reflects the

mistakes in choices (λ = 0 corresponds to random choice and λ→∞ corresponds to best

response to rivals).

Table 7 reports the estimated parameters α and λ of BRUM by treatment and grade

group for individuals who use cutpoint strategies C+ (in Appendix B8, we report the

derivation of the structural model and a comparison between the the empirical c.d.f.

and the estimated best fit of the BRUM.) For the goodness of fit (Fit), we compute the
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absolute value of the difference between the estimated probability of ‘see’ given BRUM

and the empirical probability for every x, and then average over all values of x.

grade group

3-4 5-6 7-8 9-10 11-12

T1 α 1.00 1.00 1.00 1.00 1.00
λ 0.67 2.07 2.25 1.77 1.83
Fit 0.13 0.10 0.04 0.10 0.14

T2 α 0.14 0.06 0.42 0.68 1.00
λ 1.13 1.97 1.26 1.44 0.88
Fit 0.01 0.00 0.00 0.02 0.08

T3 α 0.81 0.88 0.78 0.70 0.67
λ 1.14 1.14 2.09 2.37 2.79
Fit 0.03 0.00 0.00 0.02 0.02

T4F α 1.00 1.00 1.00 1.00 1.00
λ 0.81 1.41 0.93 0.79 1.69
Fit 0.16 0.06 0.19 0.25 0.17

T4S α 1.00 1.00 1.00 1.00 1.00
λ 0.82 1.28 0.94 0.80 1.63
Fit 0.15 0.10 0.14 0.22 0.13

Table 7: Estimation of α-CE for strategic consistent participants (C+)

There are several interesting lessons to be learned from the estimations results in

Table 7 and the graphical representations in Figure B6. Since the mean empirical cutpoint

is above m in all treatments, even full cursedness is insufficient to capture the behavior of

participants in T1, T4F and T4S (even with α = 1, the estimated probabilities of s are

still above the empirical counterparts for all x). The model is particularly unsuccessful

in the sequential treatment, where ‘pass’ is very frequent and the behavior is asymmetric

with respect to x. By contrast, the estimation provides an excellent fit in T2 and T3 (with

the exception of 11-12 in T2), with interior levels of cursedness and higher responsiveness

to utility differences as participants get older.

More generally, this behavioral theory exhibits both merits and limitations. The ob-

served partial unraveling aligns with the behavioral predictions of cursed players, who

underestimate (or ignore) the relationship between the rival’s action and information. On

the other hand, the large differences in α-estimates suggests that our participants struggle
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to incorporate treatment-specific incentives.

8 Conclusion

We have reported the results of the first controlled lab-in-the-field experiment designed to

study the strategic behavior of children and adolescents in a game with two-sided private

information, and the relationship between cognitive and affective theory of mind. To that

end, we have recruited a large sample of 1662 participants with a wide age range, 8 to 18

years old. Our study led to several critical observations.

The results indicates a stepwise hierarchy of considerations individuals need to weigh

when devising a strategy: (i) Should my private information influence my action? (ii)

How does my payoff relate to my private information under each action? (iii) When is

my action consequential and what does that mean for optimal conditioning? The answers

to these questions serve as input in the calculation of a best response strategy. While all

participants successfully navigate step (i), proficiency in step (ii) tends to improve with

age. However, the fact that they do not adjust their strategies in response to observed

behavior within a given treatment, and that strategies remain similar across treatments,

suggests that the calculations involved in step (iii) may be too intricate. This implies

that players often struggle to fully comprehend their rivals’ incentives and the broader

contextual details that inform strategic decision-making under asymmetric information.

We also observe a large heterogeneity in strategies. Some of the youngest participants

select strategies closely resembling either equilibrium or best response, while a subset of

the older participants lacks discernible, coherent strategies altogether. Importantly, in-

dividuals with a heightened sense of affective theory of mind select more often cutpoint

strategies, especially those aligned with optimal responses to others’ behavior. Conse-

quently, they achieve higher payoffs, even after accounting for age differences. This result

underscores the close relationship between affective and cognitive theory of mind. In

terms of the hierarchy of considerations highlighted above, affective theory of mind seems

to facilitate deliberation in step (ii) and, to a lesser extent, also in step (iii).

The positive correlation between a-ToM and c-ToM in our game offers insight into the

interplay between the affective and cognitive facets of our capacity to understand others.

While our results do not provide any causal evidence between affective processing and

cognitive deliberations, they suggest that the ability to detect emotional states in others
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supports our representations of their reasoning, enabling us to incorporate this insight

more efficiently into our decision-making. There is a substantial body of recent literature

emphasizing the significant role of our emotions in influencing our decision-making (Lerner

et al., 2015). Crucially, this perspective finds support in neuroscience research as well

(Naqvi et al., 2006; Phelps et al., 2014). Our results suggest that our representations of

the emotions of others also guide our decisions.

Shifting the examination of game theoretic paradigms beyond purely cognitive aspects

may provide insights into why cognitive abilities alone are frequently insufficient for success

in interactive settings. Our decision-making processes do not strictly adhere to the logical

steps of the mathematical proofs we write to compute equilibria. Instead, we often utilize

algorithms, largely unconsciously, and frequently rely on heuristics influenced by intuition.

Emotions are important factors in these decision-making processes. They serve as key

elements in translating our perception of external stimuli, such as facial expressions, and

our interpretations of constructed emotional representations into actionable information.

Individuals who excel at interpreting emotions have access to richer information about

others. It logically follows that they utilize this information as an input for shaping

their responses, which may explain the very robust connection we have observed between

performance in a-ToM and final payoffs in our game. Future research should aim to dig

deeper into the causal aspects of these mechanisms.
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Appendix A. Details of design and procedures

A1 Instructions of the game

[This is a translation of the Spanish instructions for T1 (other treatments are analogous)]

Hi, my name is Juan. Today, we are going to play a game. In this game, you will earn points.
At the end of the experiment you will exchange each point for one cent that you will be able to
spend in the cafeteria. You will get a lot of points so you will get enough money to buy something
you like. Just remember: the more points you get, the more money you will have.

The computer has 10 cards numbered 1 to 10. It will match you with another person in the
room. You will not know who that person is and it is not the objective of the game to learn that.
The computer will give one card to each of you. You will see the number in your card but not the
number in the other person’s card. (Note. See Figure A1 for the slides projected.)

[slide 1, slide 2, `click' to shuffle, `click' to pick a card, slide 3]

The rules of the game are very easy. You will both have to say “pass” or “see”.
- If you both say ‘pass’, [click] you each win 5 points, no matter what card you have.
- If at least one of you says ‘see’, [click] then whoever has the highest card wins 10 points

and the other wins only 1 point.

It is important to understand that the only way for both of you to win 5 points is if you both
say ‘pass’. So, if you say ‘pass’ but the other says ‘see’ or if the other says ‘pass’ but you say ‘see’
or if you both say ‘see’, in all these cases, whoever has the highest card wins 10 points and the
other wins 1 point. Let’s see if you have understood.

[slide 4]

Suppose you got a 6 and you decided to say ‘pass’. This is just an example. How many points will
you get if:

- [slide 5] The other has a 7 and says ‘pass’. [click]. Answer: 5 points
- [slide 6] The other has a 7 and says ‘see’. [click]. Answer: 1 point
- [slide 7] The other has a 4 and says ‘see’. [click]. Answer: 10 points

Ok. Now that we know the rules, let me explain you how we are going to play. You are going to
see in your computer a screen like this:

[slide 8]

The computer is going to ask you: what do you want to do if you get a 1 [click]? if you get
a 2 [click]? if you get a 3 [click]? And so on. You have to respond ‘pass’ or ‘see’ for each card.
It is very important that you say what you want to do for all cards, from 1 to 10. The computer
is going to ask the same questions to the other person at the same time.

When you have both responded to all the questions, the computer will give you one card each
and will do whatever you have decided. For example, if the computer gives you a 6 and for that
number you said ‘pass’ [click], the computer will choose ‘pass’ for you. Is that clear?

In order to earn more points (and therefore make more money!), you are going to play this
game six times, each time with a different person and a random number between 1 and 10. Besides,
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whatever you win in the six games, I am going to give you FIVE times that amount of money.
That is, I will multiply all the points by 5.

At the end, you will see for each of the six games [slide 9]:

- Your number
- The number of the other person
- What you told the computer to do if you got that number (‘pass’ or ‘see’)
- What the other person told the computer to do if they got that number (‘pass’ or ‘see’)
- And finally, the points you got given the rules of the game

Do you want to play?

[at the end of the game]

You can now see in your screen the choices and points you got in the six games. Do you want
to play again? Once again, I am going to give you 5 times what you get. But before I am going to
ask you again what you want to do if you get each number. Do you remember this screen?

[slide 10]

You can answer the same as before or, you can say something different if you think you can
win more points. It is totally up to you.

[at the end of the game]

You can see once again in your screen the choices and points you got in the six games.

1 2 3 4 5 9876 10

[ DIAPOSITIVA 1 ] [ DIAPOSITIVA 2 ]

PASO PASO 5 puntos cada uno

PASO VEO

VEO

VEO

PASO

VEO

Número más alto: 10 puntos
Número más bajo:   1 punto

[yo] [el otro]

[ DIAPOSITIVA 3 ]

6

PASO

6

[ DIAPOSITIVA 4 ]

[yo] [el otro]
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PASO

6 7

PASO

5 puntos 5 puntos

[ DIAPOSITIVA 5 ]

[yo] [el otro]

PASO

6 7

VEO

1 punto 10 puntos

[ DIAPOSITIVA 6 ]

[yo] [el otro]

PASO

6 4

VEO

10 puntos 1 punto

[ DIAPOSITIVA 7 ]

[yo] [el otro] Qué quieres hacer si tu número es el:

PASO VEO

1

2

3

7

6

5

4

8

9

10 [ DIAPOSITIVA 8]

Número Decisión
PUNTOS

tuyo otro tuya otro
JUEGO 1

JUEGO 2

JUEGO 3

JUEGO 4

JUEGO 5

JUEGO 6

[ DIAPOSITIVA 9 ] [ DIAPOSITIVA 10 ]

Qué quieres hacer si tu número es el:

PASO VEO

1

2

3

7

6

5

4

8

9

10 

Figure A1: Slides (in Spanish) projected on screen for instructions of the game
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A2 Developmental Read the Mind in the Eyes (DeRMET)

Instructions.

Below, you will see a series of images with a boy’s eyes expressing a certain emotion. Look closely
and choose, from the four options, the one that best represents the person’s emotion. When you
are sure of your answer, press NEXT, and the next image will appear. Once you press NEXT, you
will not be able to change your answer. For each correct answer, you will receive 10 points, which
is equivalent to 10 cents. The more correct answers, the more money you will earn.

Note to the instructor.

Each image is presented in a different page with four emotions to choose from (see the list below).
The participant must select exactly one. After a choice is made, the next image appears on the
screen and the participant cannot go back. There is no feedback between images.

List of images.

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.
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13. 14. 15.

16.

List of emotions for each image.

Image # Emotions % correct†

1 1. Bored 2. Confused∗ 3. Hopeful 4. Guilty 57.6
2 1. Sneaky 2. Angry 3. Guilty 4. Tired∗ 80.0
3 1. Guilty 2. Tired 3. Confused 4. Sad∗ 62.3
4 1. Admiring 2. Disapproving∗ 3. Shocked 4. Bored 48.0
5 1. Surprised 2. Admiring 3. Happy∗ 4. Sneaky 75.1
6 1. Confused 2. Ashamed∗ 3. Scared 4. Tired 73.4
7 1. Angry∗ 2. Scared 3. Sad 4. Worried 97.8
8 1. Excited 2. Confused 3. Thinking 4. Flirting∗ 71.7
9 1. Excited∗ 2. Happy 3. Hopeful 4. Flirting 76.1
10 1. Disgusted 2. Sad 3. Angry 4. Scared∗ 89.8
11 1. Scared 2. Bored 3. Disgusted∗ 4. Angry 73.4
12 1. Surprised 2. Happy 3. Thinking∗ 4. Disapproving 89.3
13 1. Hopeful 2. Sneaky∗ 3. Thinking 4. Excited 92.3
14 1. Guilty 2. Bored 3. Disgusted 4. Worried∗ 61.0
15 1. Happy 2. Surprised 3. Hopeful∗ 4. Sneaky 49.0
16 1. Surprised∗ 2. Happy 3. Flirting 4. Admiring 67.7

∗: correct answer.
† It reports for each image the aggregate empirical probability of finding the correct answer

Note. What we call the “correct” answer is the emotion the actor was instructed to express in a subtle

manner. For all images, it also corresponds to the choice of the majority of players.
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Appendix B. Proofs and additional analyses

B1 Proof of Proposition 1

The proof is a slight variation of Proposition 1 in [CP].

Proof of T1. Step 1. Suppose for technical convenience that F (·) is continuous and differentiable
with f(xi) > 0 for all xi (although in the experiment we use integer values of xi). By construction,
player i’s strategy is relevant only if aj = p. Conditional on aj = p, player i’s payoff is:

ui(p, p) = m and ui(s, p) = Pr(xj < xi | aj = p)h+ Pr(xj > xi | aj = p)l (1)

From (1), it is immediate that ∂ui(p,p)
∂xi

= 0 and ∂ui(s,p)
∂xi

≥ 0, which implies the existence of a unique

(but not necessarily interior) value x∗i ∈ [x, x] such that ui(p, p) R ui(s, p) iff xi Q x∗i . This proves
that the equilibrium must involve a cutpoint strategy.

Step 2. Assume player j uses a cutpoint strategy x∗j . Using (1), then for a given xi, player i’s
expected payoff under p and s and given aj = p are:

ui(p, p) = m and ui(s, p) = Pr(xj < xi |xj < x∗j )h+ Pr(xj > xi |xj < x∗j )l (2)

From (2) and given h > m, it is immediate that lim
xi→(x∗

j )
−
ui(s, p) > lim

xi→(x∗
j )

−
ui(p, p) = m. This

means that x∗i < x∗j . Using a symmetric reasoning, x∗j < x∗i , and therefore the unique Bayesian
Nash Equilibrium (BNE) unravels to x∗i = x∗j = x.

The proof in T2 is identical when xi ≥ m. When xi < m, ai(xi) = s is weakly dominated by
ai(xi) = p, so that x∗i = x∗j = m.16 The proof for T3 is symmetric to T1, with each player willing
to choose a cutpoint higher (instead of lower) than the rival. The proof for the Perfect Bayesian
Equilibrium in T4 is identical to the BNE in T1. �

B2 Learning

In the analysis shown in Table 2 we observed a trend where the inclination to seek the competition
outcome (i.e., choosing ‘see’) increases between the first and second decision (2ndDec). To inves-
tigate these changes in behavior in more detail, we combine data from all grades and calculate
S2(x) − S1(x) for each treatment. This variable captures the change in the overall likelihood of
choosing s as a function of x between the second and first decision. The results are displayed
in Figure B1, where the error bars represent ±2 standard errors of the mean. A positive value
represents an increase in s, and a negative value represents a decrease in s (as in Figure 2, we
cluster two consecutive grades together for visual ease and to increase statistical power).

If participants were to play closer to equilibrium in their second decision, we would observe
S2(x) > S1(x) for all x in T1 and T4 and for x ≥ 6 in T2 (positive values in Figure B1). We would
also observe S2(x) < S1(x) for all x in T3 and for x ≤ 5 in T2 (negative values in Figure B1).
Conversely, if we expected that participants would learn how to best respond to their peers (the

16Strictly speaking, x∗i = x∗j = x is also a BNE in T2: if x∗j = x, player i’s action is irrelevant and
viceversa. However, this knife-edge equilibrium is in weakly dominated strategies and it is not Trembling
Hand. We will therefore focus on the more natural one.
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Figure B1: S2(x)− S1(x) by treatment

vast majority of whom do not play at equilibrium), we should observe a decrease in the likelihood
of playing s for ‘low’ x and an increase for ‘high’ x across all treatments. Also, the exact cutoff
points would vary depending on the treatment and grade groups.

From Figure B1, it is apparent that the majority of changes between the first and second
decision are modest (below 0.08) and often lack statistical significance. Looking at T1, it initially
seems that participants are learning to align their choices with equilibrium predictions since S2(x)
tends to be higher than S1(x), especially for x ∈ {2, 4, 5}. However, this observation can be
misleading. A more robust version of this pattern is observed in T3, where theory predicts precisely
the opposite behavior. Even more unexpectedly, we observe an increase in choosing option s in
T2 when x ≤ 5, despite it being a dominated and empirically suboptimal strategy. In T4F, we
observe slightly more competition for low x and mixed results for high x. Overall, the general
tendency (bottom right graph) shows an increase in the choice of option s, but primarily for low
values of x, precisely when it is empirically unlikely to be advantageous.

In summary, our initial expectation of observing small but positive improvements between the
first and second decisions was not met. The slight tendency to increase the choice of option s is
unlikely to result from participants learning how to best respond or play at equilibrium, as it often
contradicts both predictions. There are several possible explanations for this lack of improvement.
Firstly, feedback in this game is not conducive to effective learning, as it often necessitates making
inferences based on counterfactual scenarios. Secondly, feedback may have been presented in an
excessively dense manner (Figure 1 (right)). Lastly, two decisions may have been insufficient to
capture a learning trend. Given the absence of meaningful changes, we will combine data from
both decisions for the remainder of the paper, unless otherwise specified.
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B3 Sensitivity of action to private information

The variations in the sensitivity of actions to private values across different grade groups can best be
appreciated by plotting the average marginal effect of information by age. We use the predictions
derived from the fitted Probit model to assess the partial derivative of the probability of each
individual of selecting option s as a function of the private value. We then calculate the average
of these derivatives within each grade group. A rising trend in the average marginal change in the
probability of choosing option s indicates that older participants are more responsive to variations
in private values. We present this information for each treatment separately in Figure B2 (error
bars represent the 95% confidence interval).
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Figure B2: Sensitivity of action to private value by treatment and age

The responsiveness of actions to changes in private value consistently grows with age, though
the strength of this effect varies among treatments. It is more pronounced in T4 and milder in T2.
This observation confirms that older players change their behavior more drastically in response to
changes in information compared to their younger peers.

B4 Behavior of individuals who use and do not use cutpoint
strategies

We carry out a Probit regression similar to the one in Table 2. However, we divide the sample into
two groups: individuals who use perfect cutpoint strategies (C+ = C0 + aS + aP) and individuals
who do not use perfect cutpoint strategies (notC+ = C1 + ALT + Other). Using the predictions
obtained from these Probit models, we perform the same exercise as in Figure B2 to examine
the sensitivity of action to private information across ages. For simplicity, we pool all treatments
together. The results of this exercise are presented in Figure B3 for all players together (All, left),
players who use cutpoint strategies (C+, center), and players who do not use cutpoint strategies
(notC+, right).

As already indicated in section 4, Figure B3 (left) reaffirms that older participants react more
to private value than their younger peers. According to Figure B3 (center), the subgroup of
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Figure B3: Sensitivity of action to private information by type of strategy

individuals who use cutpoint strategies display the highest sensitivity to information. Importantly,
this sensitivity remains relatively consistent across different grade groups, with only a slight increase
as they grow older. In contrast, individuals who do not employ cutpoint strategies exhibit low
sensitivity to information, primarily because of their frequent switches between the ‘pass’ and ‘see’
options. However, with increasing age, these switches become less frequent, resulting in higher
sensitivity to information, as depicted in Figure B3 (right). It’s noteworthy that our youngest
players who employ cutpoint strategies display a sensitivity to information comparable to our
oldest “average” player. Conversely, our oldest participants who do not employ cutpoint strategies
exhibit a sensitivity to information similar to our youngest “average” player.

In summary, participants in all ages who employ cutpoint strategies exhibit consistent reactions
to information. Primary differences across grade groups are twofold: (i) proportion of individuals
who adhere to strategic consistency and (ii) behavior of those who do not adhere to it.

We also conduct a basic analysis of changes in strategies across decisions. In Table B1, we
present a 2 × 2 matrix. Each cell represents the percentage of observations that correspond to a
cutpoint (C+) v. no cutpoint (notC+) strategy in the first (rows) and second (columns) decision.

C+ notC+

C+ 43.2 11.4
notC+ 9.7 35.7

Table B1: Percentage of strategies in first (rows) and second (columns) decision

Once again, Table B1 provides evidence that systematic changes in behavior are largely absent.
Indeed, for the vast majority of cases (78.9%), we observe the same type of strategy in both deci-
sions. Furthermore, the likelihood of learning and unlearning are very similar: among participants
who choose notC+ in the first decision, 21.4% choose C+ in the second, and among participants
who choose C+ in the first decision, 20.9% choose notC+ in the second. This means that when
there is a change, it is equally likely to reflect an increase or a decrease in strategic consistency. A
similar pattern emerges when considering the finer partition of all six strategies.
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B5 Choices of participants as first and second movers

Given our strategy elicitation method, participants in the sequential treatment make choices for
all x, both as first and second movers. We can then perform a comparison of individual choices
(‘pass’ v. ‘see’) in T4F and T4S. Figure B4 reports that information by grade group (left) and
private value (right).
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Figure B4: Change in individual choice between T4F and T4S

Although many individuals choose the same action as both first and second movers, there is still
a significant fraction who change between the two roles. As one would expect, changes are more
frequent for intermediate values of information, where the optimal decision is less clear (34-35%
for x ∈ {5, 6, 7}) than for extreme ones (23-26% for x ∈ {1, 2, 9, 10}), as shown in Figure B4(B).
Additionally, our younger participants are almost twice as likely to change their actions compared
to their older counterparts (35-36% in 3-4, 5-6, 7-8 v. 17-20% in 9-10, 11-12, Figure B4(A)). On the
other hand, changes are equally frequent in both directions at all ages and for all values, reinforcing
the idea that players treat their decision as first and second mover very similarly.

B6 Descriptive statistics of performance in DeRMET

Figure B5 summarizes the distribution of correct answers in DeRMET by grade group, with the
group average at the top.

As with most tasks that combine sensory perception with the ability to process social cues,
a-ToM is not age-invariant. Nevertheless, the average improvement is relatively small despite the
large age range (from 10.1 to 12.6, t-test p < 0.001). Most importantly, very few participants
obtain a perfect score (16) or a score likely to occur under random choice.17 This means that the

17A random player would obtain a score of 5 or less with probability 0.81, which is very far from what
we observed in any grade group.
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Figure B5: Distribution of correct answers in the DeRMET (a-ToM) task by grade group

task is well-calibrated: neither trivial nor impossibly challenging for any individual. Finally, the
percentage of correct answers for each image varies between 48.0% and 97.8%, which means that
the answer we designated as “correct” aligns with the choice of the majority of participants.18

B7 Theoretical derivation of the α-cursed equilibrium

We can compute for each treatment, the optimal decision of α-cursed players. Following the same
steps as in (2) and assuming that α-cursed player j chooses the cutpoint xα, the expected utility
of α-cursed player i with value xi in T1 when they play s and given aj = p is:

uαi,T1(s, p;xi) = α
[

Pr(xj < xi)h+ Pr(xj > xi)l
]

+(1− α)
[

Pr(xj < xi |xj < xα)h+ Pr(xj > xi |xj < xα)l
]

= α
[
F (xi)h+ (1− F (xi))l

]
+ (1− α)

[
min{1, F (xi)

F (xα)}h+ max{0, 1− F (xi)
F (xα)}l

]
The equilibrium cutpoint xαT1 is given by uαi,T1(p, p;xαT1) = uαi,T1(s, p;xαT1), that is:

m = α
[
F (xαT1)h+(1− F (xαT1))l

]
+ (1− α)h ⇔ F (xαT1) =

{
1− h−m

α(h−l) if α ≥ h−m
h−l

0 if α < h−m
h−l

(3)

A similar analysis in T2 yields:

uαi,T2(s, p;xi) = α
[
F (xi)xi + (1− F (xi))l

]
+ (1− α)

[
min{1, F (xi)

F (xα)}xi + max{0, 1− F (xi)
F (xα)}l

]
18This is important for our research. Indeed, if it were not the case, it would bring into question what

constitutes a correct answer: the one we expect or the one that individuals choose.
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so the equilibrium cutpoint xαT2 is implicitly defined as the solution of:

m = α
[
F (xαT2)xαT2 + (1− F (xαT2))l

]
+ (1− α)xαT2 ⇔ α(1− F (xαT2)) =

xαT2 −m
xαT2 − l

(4)

Using implicit differentiation, it can be easily shown that:

∂xαT2

∂α
> 0, xαT2 = m when α = 0, xαT2 < h when α = 1

The analysis is similar in T3 except that we need to condition on aj = s:

uαi,T3(s, s;xi) = α
[

Pr(xj < xi)h+ Pr(xj > xi)l
]

+(1− α)
[

Pr(xj < xi |xj > xα)h+ Pr(xj > xi |xj > xα)l
]

= α
[
F (xi)h+ (1− F (xi))l

]
+ (1− α)

[
max{F (xi)−F (xα)

1−F (xα) , 0}h+ min{1, 1−F (xi)
1−F (xα)}l

]
The equilibrium cutpoint xαT3 is given by uαi,T3(p, s;xαT3) = uαi,T3(s, s;xαT3), that is:

m = α
[
F (xαT3)h+ (1− F (xαT3))l

]
+ (1− α)l ⇔ F (xαT3) =

{
m−l
α(h−l) if α ≥ m−l

h−l
1 if α < m−l

h−l
(5)

Finally, since a cursed player does not link action to information, the second mover does not
revise their beliefs after observing the choice of the first mover. As a result, xαT4F = xαT4S = xαT1.

For uniform distributions with x = l and x = h, we simply set F (x) = x−l
h−l in (3)-(4)-(5) to obtain:

T1 :

{
xαT1 = h− h−m

α if α ≥ h−m
h−l

xαT1 = l if α < h−m
h−l

, T2 : α
h− xαT2

h− l
=
xαT2 −m
xαT2 − l

T3 :

{
xαT3 = l + m−l

α if α ≥ m−l
h−l

xαT3 = h if α < m−l
h−l

B8 Structural estimation of the α-cursed equilibrium

In each trial, subject i chooses between s and p. In treatment Tk, the expected payoff of action
ai = {s, p} given a value xi is:

UαTk(ai;xi) = Pr(aj = p)uαi,Tk(ai, p;xi) + Pr(aj = s)uαi,Tk(ai, s;xi)

but the perceived payoff is:
V αTk(ai;xi) = UαTk(ai;xi) + εi,ai

The probability that i chooses option s over p in treatment Tk given xi is therefore:

P si,Tk(xi) = Pr[UαTk(s;xi) + εi,s > UαTk(p;xi) + εi,p]

= Pr[εi,p − εi,s < UαTk(s;xi)− UαTk(p;xi)]
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Let us assume that error terms are independent and follow an extreme value distribution with
cumulative density function:

Fi(εi,ai) = exp(−e−λεi,ai ) with λ > 0 for all ai = {s, p}

For any λ, the probability that subject i with value xi chooses option s over p in Tk is the
logistic function:

P si,Tk(xi) =
1

1 + e−λ(U
α
Tk(s;xi)−U

α
Tk(p;xi))

• In T1, uαi,T1(s, s;xi) = uαi,T1(p, s;xi) and uαi,T1(p, p;xi) = m. Therefore:

P si,T1(xi) =
1

1 + e−λ(Pr(aj=p)(uαi,T1(s,p;xi)−u
α
i,T1(p,p;xi)))

=
1

1 + e−λ(F (xαT1)(u
α
i,T1(s,p;xi)−m))

With our parameters, if α ≤ 5
9 , xαT1 = 1. If α > 5

9 , xαT1 = 10− 5
α and there are two cases:

(i) If xi ≤ 10− 5
α , then F (xαT1)(uαi,T1(s, p;xi)−m) = 4

9

[
xi − 10 + 5

α

]
(ii) If xi > 10− 5

α , then F (xαT1)(uαi,T1(s, p;xi)−m) = 9α−5
9

[
xi − 10 + 5

α

]
• In T2, uαi,T2(s, s;xi) = uαi,T2(p, s;xi) and uαi,T2(p, p;xi) = m. Therefore:

P si,T2(xi) =
1

1 + e−λ(Pr(aj=p)(uαi,T2(s,p;xi)−u
α
i,T2(p,p;xi)))

=
1

1 + e−λ(F (xαT2)(u
α
i,T2(s,p;x2)−m))

We know that F (xαT2) = 1 − xαT2−m
α(xαT2−l)

which, given the parameters of the experiment, can be

rewritten as:
xαT2−1

9 = 1− xαT2−5
α(xαT2−1)

. Solving this equation, we get:

xαT2 =
11α− 9 +

√
(11α− 9)2 − 4α(10α− 45)

2α
∀α > 0

(i) If xi ≤ xαT2, F (xαT2)(uαi,T2(s, p;xi)−m) =
xαT2−1

9

[
α
(
xi−1
9 xi + 10−xi

9

)
+ (1− α)

(
xi−1
xαT2−1

xi +
xαT2−xi
xαT2−1

)
− 5
]

(ii) If xi > xαT2, F (xαT2)(uαi,T2(s, p;xi)−m) =
xαT2−1

9

[
xi − α

(
(xi−1)(10−xi)

9

)
− 5
]

• In T3, uαi,T3(s, p;xi) = uαi,T3(p, s;xi) = uαi,T3(p, p;xi) = m. Therefore:

P si,T3(xi) =
1

1 + e−λ(Pr(aj=s)(uαi,T3(s,s;xi)−u
α
i,T3(p,s;xi)))

=
1

1 + e−λ((1−F (xαT3))(u
α
i,T3(s,s;xi)−m))

With our parameters, if α ≤ 4
9 , xαT3 = 10. If α > 4

9 , xαT3 = 1 + 4
α and there are two cases:

(i) If xi > 1 + 4
α , then (1− F (xαT3))(uαi,T3(s, s;xi)−m) = 5

9

[
xi − 1− 4

α

]
(ii) If xi < 1 + 4

α , then (1− F (xαT3))(uαi,T3(s, s;xi)−m) = 9α−4
9

[
xi − 1− 4

α

]
• In T4, P si,T4F(xi) = P si,T4S(xi) = P si,T1(xi).

For the estimation, we look at each grade group and treatment separately. For each individual
and for each xi, λ and α, we compute xαTk and P si,Tk(xi). Then we compute the likelihood of the
entire data given (α, λ), and look for the values of α and λ that maximize the likelihood of the
observed frequencies of actions.

Finally, Figure B6 reports the empirical c.d.f. (Sc(x), as in Figure 4) and the estimated best
fit of the BRUM.
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Figure B6: Best fit (α, λ) of BRUM for strategic consistent participants (C+)
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