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Abstract

Psychophysics studies suggest that our perception of time is different from the ob-
jective passage of time. Economics research emphasizes that the value of a reward
depends on the delay involved. In this paper, we combine both strands and esti-
mate time perception and time discounting functions at the individual level in an
incentivized controlled laboratory environment. We find a negative and statistically
significant correlation between time perception and time discounting: subjects who
overestimate objective time intervals are less willing to delay gratification. The result
suggests that our ability to delay consumption is related to our mental representation
of time delays.
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Time is too slow for those who wait, too swift for those who fear, too long for those

who grieve, too short for those who rejoice, but for those who love, time is not.

Henry Van Dyke (“Time Is” - Music and Other Poems, 1904)

1 Introduction

As the poet elegantly expressed, time is subjective. It flies when you enjoy and virtually

stops when you suffer. Tomorrow is “in a very long time” for kids and “practically now”

for seniors. While the feeling of the passage of time is not clearly defined, the observation

suggests an intriguing possibility, namely a connection between how we perceive time and

how we discount time. The goal of this paper is to formally explore such relationship

in a narrow but well-defined objective setting. Our conjecture is simple: if one person

perceives one week to be longer than another person, it seems natural that he will be less

willing to delay a reward by that amount of time. Even though inter-temporal decisions

likely depend on many different cognitive processes, we hypothesize that timekeeping

mechanisms are partly responsible for observed choices. If the hypothesis is correct, it can

help understand the paradoxical tendency of older adults to save more than younger adults

(Banks et al., 1998) despite their shorter life expectancy. More generally, validating our

hypothesis would suggest that eliciting discount rates is a valuable but incomplete measure

to understand the intertemporal tradeoffs that different people make.

To address this question we ask subjects to perform two tasks in a controlled laboratory

environment. First, we elicit their time discount rates using the method proposed by

Andreoni and Sprenger (2012a) (hereafter, [AS]), where subjects allocate a fixed amount

of tokens between two dates. We use their convex time budget (CTB) method due to its

robustness, and structurally estimate a quasi-hyperbolic discount function and curvature

of utility.1 Second, we elicit their time perception estimates using a task adapted from the

psychophysics literature and extended in several ways, where subjects reproduce intervals

of lengths ranging between 20 seconds and 4 minutes. Formally, we ask them to click

the start box to begin a time interval and click again when a predetermined amount of

time (e.g., 2 minutes and 31 seconds) has passed. This task is performed in conjunction

with a distractor task that prevents them from counting seconds. We estimate for each

individual a time perception power function that maps true time intervals into perceived

1One advantage of CTB is that it controls for diminishing marginal utility. It has been recently employed
in a wide variety on contexts (see e.g., Andreoni et al. (2015), Augenblick et al. (2015), Carvalho et al.
(2015) and Kuhn et al. (2015)). However, it has also received some criticisms (Harrison et al., 2013). We
realize that different methods have different advantages and use one which has proved simple and reliable.
The paper does not take a stand on the debate over the advantages of different methods and does not
attempt to improve upon them.
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time intervals. Finally, we correlate the impatience or preference for the present derived

from the time discounting task (T D) with the subjective evaluation of time obtained from

the time perception task (T P).

We find substantial dispersion in the time discounting of our subjects. The estimated

parameters in the T D task are in line with those found in [AS], with low levels of impa-

tience, little evidence of present bias and some small (but positive) concavity in the utility

function. Perception estimates in the T P task are also heterogeneous. Although a large

fraction of individuals systematically underestimate time (around 40%), we also observe

the opposite tendency in a number of subjects (around 30%). More generally, we find

evidence of both concave and convex time perception functions.

The main novelty of the study is to analyze the relationship between time perception

and time discounting. To this purpose, we correlate the estimated perception function with

the estimated discount function. We first show that our subjects can be ranked consistently

in their time perception and time discounting attitude for delays in the range of 1 hour

to 1 week. We can then perform a correlation analysis at the individual level within

this time range. For all intervals, we find a statistically significant negative correlation

between the level of impatience estimated in the T D task and the perception of time

estimated in the T P task: the Pearson correlation coefficient (PCC) ranges between -0.20

and -0.30 with a p-value between 0.01 and 0.05 depending on the delays, conditions and

functional specifications. In other words and consistent with our hypothesis, subjects who

overestimate objective time intervals are less likely to delay consumption by that amount

of time than subjects who under-estimate them. Said differently, timekeeping mechanisms

are related to inter-temporal decision-making.

We then use this result to build a simple model of discounting based on time perception.

Formally, we assume that subjects mentally represent the perceived time of a given true

delay and apply a discount to this perceived delay. We find that the fit of this model is

on aggregate equally good than that of the original model (though not strictly better),

suggesting that time perception is a likely driver of mental discount computations when

we evaluate future rewards.

Our paper relates to the growing literatures on time discounting and time perception.

Time discounting has received much attention in economics. Researchers have proposed

different parametric formulations of the time discounting function as well as different

experimental designs to elicit them, and the empirical and experimental estimates vary

significantly across studies. There are two main challenges for the elicitation of time

discounting. First, subjects may not be time-consistent and overweigh immediate grati-

fication relative to all future ones. This has motivated hyperbolic specifications of time
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discounting as opposed to the standard exponential formulation.2 Second, time is inher-

ently uncertain and deciding to postpone consumption amounts to choosing a lottery. It

is therefore important to be able to disentangle risk preferences from time preferences. In-

deed, when choosing between consumption now and consumption in the future, a subject

may choose the former because uncertainty about the future makes the present option

more desirable. The recent literature proposes methods to jointly estimate time and risk

preferences (Andersen et al. (2008); Andreoni and Sprenger (2012a, 2012b); Andersen et

al. (2014)) and reports less or no evidence of a present bias. Our analysis relies on this

last line of research, which allows us to better isolate time discounting.

Time perception has also been extensively studied in the psychophysics literature. It

is centered on prospective time evaluations, where subjects are informed beforehand that

they have to make a time related judgment. These studies mostly focus on extremely short

intervals (milliseconds, seconds) and use non-incentivized methods in which subjects have

either to verbally assess a duration, reproduce or produce a time interval, or compare

the duration of intervals presented successively (Lorraine (1979); Grondin (2010)). There

are two major findings in this literature. First, prospective time evaluation is often con-

sistent with Weber-Fechner’s law of human perception, implying that subjective time is

not linear in true time but rather proportional to its logarithm (Grondin, 2001). Sec-

ond, individual evaluations are qualitatively similar for time intervals of different lengths

(Lewis and Miall, 2009), suggesting the existence of a single ‘internal clock’ mechanism

that governs prospective timing. Our study draws on the concept developed in this liter-

ature and also focuses on prospective timing. However, we propose a new methodology

that departs from the existing literature in several important respects. First, we focus on

significantly longer time intervals than the majority of the literature (several minutes).

Second, we introduce a new and incentivized elicitation method paired with a distractor

task that prevents subjects from counting. Third, we provide a structural estimation of a

two-parameter power function of time perception instead of imposing a logarithmic form.

Indeed, although there is evidence of a concave relationship between true and perceived

time for many subjects, there is also a significant fraction of individuals for which the

opposite, convex relationship fits better. Finally, we estimate the perception function at

the individual –not the aggregate– level. This allows us to study heterogeneity in percep-

tion across subjects.3 Despite these methodological differences, our study builds on the

2The quasi hyperbolic formulation was first developed by Phelps and Pollak (1968) in a model of
imperfect intergenerational altruism. It was later reintroduced by Laibson (1997) to study the dynamic
choices of an individual who overweighs the present. Lowenstein and Prelec (1992) propose a general
hyperbolic specification.

3Some studies investigate instead retrospective time evaluation, where subjects are not informed be-
forehand that they will have to make a time related judgment (Block and Zakay, 1997). By definition,
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existing knowledge and paradigms developed in psychophysics, and we also borrow the

terminology of the field. In particular, the reports provided by subjects will be labeled as

“perceived time” or “subjective time” measurements.

Finally, we are not the first to argue the possibility of a relationship between time

perception and time discounting. This has been theorized in several studies. Read (2001)

tested for sub-additivity in time discounting and suggested that a possible reason for this

effect was the subjective evaluation of time (due for example to differences in memory and

attention). Lemoine (2015) built a model that captures the acceleration of time as we age

and Capra and Park (2015) studied the effect of time distortions. However, most of the

literature has focused on the potential relationship between time perception and present

bias. In particular, Ray and Bossaerts (2011) proposed a theoretical approach to show

that choices are present-biased with respect to calendar time if individuals discount the

future exponentially with respect to biological time while the internal representation of

time is stochastic and autocorrelated. Cui (2011) demonstrated that the scalar property

of time perception also implies hyperbolic discounting.4 A few studies have used experi-

mental techniques to relate present-bias and impulsivity to time perception (Zauberman

et al. (2009) and Han and Takahashi (2012)). Their aggregate analysis reveals hyperbolic

discounting with respect to objective time but exponential discounting with respect to

subjective time.5 In the present study, we are interested in a more fundamental question:

we want to test at the individual level whether subjects who perceive objective time as

subjectively longer will be less prone to delay consumption. We are not directly interested

in time discounting biases and there is, in fact, little evidence in our data in favor of

hyperbolic discounting.

under this approach only one measure can be obtained per individual. The studies find that retrospective
time evaluations are usually shorter than prospective time evaluations (Fraisse, 1984) and they draw on
different (memory) processes. We performed a one-shot retrospective time evaluation task and also found
more underestimation than under prospective time evaluation (see Appendix A2).

4Takahashi (2005) built a model of dynamic inconsistency based on Weber’s law. Wittman and Paulus
(2008) proposed a model that relates impulsivity to time experience.

5These studies were not incentivized and produced unreasonably high discount rates (e.g., 160% annual
rate for three-month delays). Importantly, they did not use a conventional time perception task either.
Instead, time perception was measured by marking how long future delays (three months, one year, three
years) felt on a line scale. In our view, such approach is unsuitable to elicit time perception estimates.
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2 The experiment

2.1 Design and procedures

The experiment was conducted in the Los Angeles Behavioral Economics Laboratory (LA-

BEL) at the University of Southern California.6 A total of 124 subjects participated in

the study in 14 groups of 6 to 10 participants each. In order to participate in the experi-

ment, subjects were required to be enrolled USC students with a USC Discretionary Card

Account. Students frequently use their USC Card to pay in businesses on campus and the

surrounding area. By special arrangement with the USC Card Department, we were able

to deposit money into their accounts at our convenience.

Sessions lasted for about 1h30min and started either at 10am or 12pm. They consisted

of two main tasks, always administered in the same order: time discounting task followed

by time perception task. Instructions were read out loud at the beginning of each task.

Since our time perception task is the most novel of the two, we will all along the paper

discuss it first (but remember that it was administered second).7 The complete instructions

are presented in a separate “General Instructions” online appendix.

Time perception task. Participants were asked to produce 9 time intervals τ of 24,

31, 41, 53, 69, 89, 116, 151 and 196 seconds respectively, without knowing in advance

the number or length of intervals to produce.8 We designed a Matlab-based program to

implement the elicitation of the participants’ time perception. It presented the instructions

on the screen and guided subjects to estimate time intervals. Subjects were prompted the

length of the interval τ to be estimated. Then, subjects marked the beginning and end of

the interval by clicking on a button on the top right corner of the screen. The order for

the 9 intervals was randomly selected but it was the same for all subjects.9 The reports

collected will be referred to as subjective or perceived time.

To make sure that subjects did not count time, we asked them to solve novel filler

(distracting) tasks while estimating time intervals.10 In each of these tasks, subjects were

6For information about the lab, please visit http://dornsife.usc.edu/label.
7We chose that order because we thought that actions in the time perception task could prime choices

in the time discounting task. By contrast, it seemed less plausible that choices in the time discounting
task would impact the accuracy of subjects in the time perception task.

8This is called a prospective time estimate in a production paradigm. Prospective (as opposed to
retrospective) refers to a case where subjects know in advance that they will be requested to estimate the
elapsed time. Production occurs when subject are informed about the length of the interval they must
produce (Nichelli, 1996). This is different from reproduction, where subjects experience a time interval
(without knowing its real length) and are then asked to reproduce a second interval of the same size.

9Before coming to the laboratory, subjects were asked to put away any time-keeping devices such as
watches, music players and cell phones. An experimenter made sure that subjects placed these items in
their bag and monitored that they did not use any such device.

10Chronometric counting is avoided in the psychophysics literature by resorting to interfering tasks.
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presented a 4× 6 table where each row and column had a name and they were instructed

to click on a specific cell. In the example of Figure 1, subjects were asked “Please click the

cell where the column to the right of the column labeled athena intersects the row above

the biology row”.

Figure 1: Example of a filler task

The names of the rows and columns as well as the phrasing of which cell to click on

changed from table to table to make sure subjects would pay attention. There was a

random and unspecified time limit to complete each task (between 10 and 15 seconds) and

failure to complete it counted as an incorrect answer.11,12 The amount earned depended

on the proportion of correct answers in the filler tasks and the distance between time

estimates and true time intervals. For each subject, one time interval was randomly

selected for payment. For this time interval, the subject earned money only if at least

80% of the filler tasks were correctly answered. The subject would then earn $25 if the

estimate was within ±5% of the real length of the interval, $15 if it was within ±10% and

These usually consist in asking participants to repeat aloud digits presented on a computer screen (Wearden
et al., 1997). Given we organized sessions with several participants, it was not possible to use such method.

11Subjects were informed that there was a time limit of “a few” seconds. They also knew that this
unspecified time limit was not constant over tasks. Finally, they had some practice rounds where they
could build an estimate of the approximate time they had to complete the task.

12The tasks required sufficient effort to prevent subjects from counting but were easy enough to make
sure all subjects could complete them if they paid attention. Participants were informed that if they
reported the end of an interval during a task, that task would not count as correct or incorrect. Subjects
also estimated a 10th time interval of 219 seconds (always performed last), which was not used for analysis.
Here is why: participants clicked to report their time interval estimates and their answers to the filler task.
All these clicks could be heard by other participants, who could not disentangle between either types of
clicks until almost the end of the experiment. As such, there were 9 relevant intervals during which subjects
could hear all other subjects clicking to complete either task, and therefore could not make any inference
about the time estimations of their peers. Towards the end of the experiment, in the 10th trial, they could
potentially use the absence of clicking as a cue that the others had finished their time estimations. This
could bias their own last time estimate.
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$5 if it was within ±20%. If less than 80% of the filler tasks were correctly answered, the

subject did not earn anything no matter how good the estimation of the time interval was.

The entire procedure was explained beforehand.13,14

Time discounting task. Since the goal of the paper was not to provide an innovative way

to elicit time discounting, we followed closely the CTB design and allocation procedure

in [AS]. We provided subjects with a budget of experimental tokens to allocate either to

a sooner time t or a later time t+ k, at different token exchange rates. The relative rate

at which tokens translated into money determined the gross interest rate, (1 + r). The

amounts allocated at dates t and t + k were denoted by ct and ct+k respectively. We

implemented a 3×3 design with three sooner payment dates starting from the experiment

date (t ∈ {0, 7, 21} in days) and three delay lengths (k ∈ {21, 42, 63} also in days). For

each of the 9 pairs of (t, k), there were 5 different budgets and exchange rates for a total

of 45 sooner-later token allocation tasks. Dates were selected to avoid holidays, vacations

and examination dates. To avoid differential weekday effects, t and k were both multiples

of 7, so that payments were scheduled to arrive on the same day of the week.

Subjects were given 10 tokens for each of the 45 allocation tasks. Tokens assigned to

sooner and later payments had values vt and vt+k, respectively. Since vt+k/vt = (1 + r)

is the gross interest rate over k days, (1 + r)1/k is the daily interest rate. Values were

never multiples of $0.05 to avoid gravity point effects. To formally implement choices, we

provided paper booklets. Subjects had to circle their preferred token allocation among

the eleven possible combinations of tokens sooner vs. token later in each of the 45 tasks.

Appendix A1 shows the token rates, standardized daily interest rates and corresponding

annual interest rates for all 45 budget sets. It also shows the presentation of the first 5

tasks of the paper booklet, corresponding to t = 0 and k = 21 (Figure 8).

To avoid in-lab vs out-lab payments at different dates, all sooner and later payments,

including those for t = 0, were deposited into the subjects’ USC Card Accounts by 4pm on

the specified date.15 Subjects were described the payment method and the arrangement

made with the USC Card Department. They were told that they would receive a $4.64

thank-you payment for participating in two payments, $2.32 at the sooner and $2.32 at

13We chose this method because it is more intuitive and easier to explain than the (incentive compatible)
quadratic scoring rule. Also, there is evidence that reports vary even among different proper scoring rules
(Palfrey and Wang, 2009).

14In 84% of the trials, subjects answered correctly at least 80% of the filler tasks and therefore were
eligible for payment. Subjects did not receive performance feedback during the filler task to make sure
they had incentives to estimate time accurately. After each time interval, they were informed of their
performance on the filler tasks but not on the time interval estimation task.

15This removes the salience of immediate payment. It is likely to result in the later option being chosen
more frequently but it also makes the uncertainty and potential anxiety over payment similar whether it
is today or in the future (for a discussion, see Andreoni and Sprenger (2012a, 2012b)).
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the later date regardless of their choices, and that all experimental earnings were added

to these two payments. Subjects knew in advance that one of the 45 choices was going to

be selected for payment by drawing a numbered ball from a bingo cage. They were given

Professor Juan Carrillo’s business card and they were told to contact him if payments did

not reflect in their account, in which case a payment would be hand-delivered immediately.

Subjects were asked if they trusted the payment method at the end of the experiment and

95% of respondents replied yes.16

Other tasks. We conducted three peripheral tasks: a one-shot retrospective time estimate

task, a cognitive ability test, and a survey to collect demographic information. We used

the data collected in those tasks as controls in our regression analysis. Further details of

the procedures and results obtained in these tasks can be found in Appendix A2.

From the 124 subjects who participated in the study, four subjects were excluded due

to data recording issues, leaving us with a sample of 120 subjects.

2.2 Challenges

An experimental study of time perception and time discounting is subject to three chal-

lenges. First, the temporal horizons are different. We can realistically elicit multiple

prospective time estimates that are on the range of minutes whereas meaningful monetary

tradeoffs must involve temporal delays that are on the range of weeks. We will therefore

extrapolate our estimates upwards for time perception and downwards for time discount-

ing. Modeling time perception and time discounting will allow us to identify the most

reliable extrapolations and we will consider variants to check the robustness of our results.

Second and related, our goal is to compare perception and discounting across indi-

viduals. If some time perception functions are not linear in true time and/or some time

discount functions are not exponential, rankings may depend on the horizon (for example,

a hyperbolic discounting subject may be more impatient in the short run and less impa-

tient in the long run than an exponential discounting subject). In the analysis, we will

put special emphasis in determining the time range for which the ranking of the estimates

between individuals is preserved.

Third, the mechanisms that govern time perception are physiological whereas time

discounting in the context of choices is governed by cognitive processes that involve many

16The full list of differences relative to [AS] are (first item refers to our design, second item to theirs): (i)
payment to USC card vs. payment by check; (ii) thank you payments of $2.32 vs. $5; (iii) slight differences
in (r, t, k,m) but calibrated to equalize daily gross interest rates (see Figure 8); (iv) 11 vs. 101 choices per
budget; (v) pen and paper vs. computerized implementation; and (vi) 120 vs. 97 subjects.
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interacting systems.17 It is therefore unlikely to find a perfect correlation between time

perception biases and time discounting attitudes. Our objective is simply to reveal any

significant relationship between the two processes to help looking into the time discounting

black box.

3 Time perception (T P)

We first present the theoretical framework and experimental results of our time percep-

tion task. Time perception refers to the fact that an objective length of time may be

inaccurately perceived, leading to under- or over-estimation of true delays. This issue has

been analyzed as part of the general study of human perception, that is, the relationship

between the actual change in a physical stimulus (e.g., the unfolding of objective time) and

the perceived change. The original modeling of human perception is known as the Weber-

Fechner law (Fechner, 1860) that posits a logarithmic relationship between the physical

intensity of a stimulus and its perception. The law has been applied to many sensory

areas and, in particular, to time. Psychophysics has documented non linearities in numer-

ous experiments in which perception is measured objectively through timing tasks where

subjects are asked to produce, reproduce or compare time intervals. The field has also

developed theoretical frameworks, such as the scalar timing theory (Gibbon, 1991). Also,

research in neuroscience suggests that perceived durations result from the way neurons

encode specific durations in their firing rate (Matell and Meck (2000); Matell, Meck and

Nicolelis (2003)). Furthermore, even though most of the experimental timing literature

considers perception of short intervals of time (at most a few minutes), animal studies

focusing on intervals above one day (Crystal, 2001) as well as time-based prospective

memory and time management studies (Francis-Smythe and Robertson (1999); Waldum

and McDaniel (2016)) suggest that a coherent underlying timing mechanism governs time

perception and time estimation of future delays over both short and long periods of time.

We consider here a simple model of time perception in which subject i formulates a

subjective duration θi of a true time interval of length τ according to the function:

θi(τ) = aiτ
bi (1)

where ai = bi = 1 corresponds to a correct time perception. This representation is bor-

rowed from Steven’s law, a generalization of the Weber-Fechner law, which posits a power

17Time representation involves mostly the striatum and the basal ganglia (Ivry and Spencer (2004), Meck
(2005)). Temporal choices involve the ventral striatum and several areas of the Prefrontal Cortex (Kable
and Glimcher (2007); Peters and Buechel (2009)). The latter is of significant importance for executive
function and attention.
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relationship between the magnitude of a physical stimulus (distance of an object, bright-

ness of an image, level of a sound, sugar component of a meal, etc.) and its perceived

strength (Stevens, 1957). This theoretical relationship captures the non linearities men-

tioned above and encompasses perception functions that are concave (b < 1), linear (b = 1)

or convex (b > 1) in true time.18 It has been applied to a variety of problems, including

time perception (Stevens (1975); Luce (2002)).

We fitted this model to the data obtained from the time perception task (T P). For

each individual i, we estimated by non linear least squares (NLS) the parameters ai and

bi of the following regression:

yis = aiτ
bi
s + εis (2)

where, for trial s ∈ {1, ..., 9}, the reported perception of individual i is yis, the true

length in seconds is τs ∈ {24, 31, 41, 53, 69, 89, 116, 151, 196}, and the noise in the process

is εis ∼ N(0, σ2
i ). Using a boxplot analysis, we identified three extreme outliers (âi > 8).19

These subjects were excluded from the analysis. Figure 2 graphically depicts the estimated

parameters (âi, b̂i) of the remaining 117 subjects. For illustrative purposes, Figure 3

presents the choices of three representative subjects (with b̂i > 1, b̂i ' 1 and b̂i < 1,

respectively).

0
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6

0.50 0.75 1.00 1.25 1.50
b

a

Figure 2: Individual time perception parameter estimates (âi, b̂i).

We obtained three main findings. First, the power model explains remarkably well the

data: the average R2 is 0.98 and 106 out of 117 individuals have an R2 greater than 0.95.20

In other words, subjects typically reported estimates that were very close to the best

18However, it does not accommodate more general relationships, such as functions that are first convex
and then concave.

19Following the standard definition, a value is considered an extreme outlier if it is at least 3 interquartile
ranges below the first quartile or at least 3 interquartile ranges above the third quartile.

20R2 is expected to be high since we fit two parameters with 9 observations. Still, since we impose
θi(0) = 0, our regression has 7 degrees of freedom. The subjects in Figure 3 are representative of the fit.
We also tried a linear model but the fit dropped substantially.
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time perception power fit. Second, there is substantial heterogeneity across individuals

in our sample. Indeed, 77 and 40 subjects had an estimated parameter âi greater and

smaller than 1, respectively. Similarly, 81 and 36 subjects had an estimated parameter b̂i
smaller and greater than 1, respectively. This suggests that crucial information is lost if

we simply fit an aggregate perception function, and that constraining the function to be

logarithmic (as in the majority of the psychophysics papers that follow the Weber-Fechner

law) severely undermines the quality of the individual estimates.21 Third, time perception

parameters ai and bi are not independent across individuals. More precisely, we found a

strong hyperbolic relation between the two parameters (see Figure 2).22 This means that

both parameters cannot be studied in isolation: an individual with a concave perception

of time (b̂i < 1) is extremely likely to exhibit a steep reaction to time (âi > 1) and vice

versa.
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Figure 3: Three examples of choices in the time perception task

4 Time discounting (T D)

We now present the theoretical framework and experimental results of our time discounting

task. We refer to [AS] for extra details of the theory and estimation. Subject i chooses at

time 0 to allocate a budget m between consumption at t, ci,t, and consumption at t + k,

21Indeed, the literature has often specified the following time perception function: θi(τ) = ci log (τ + 1).
This functional form performs substantially worse in our data: average adjusted R2 is 0.81 (compared to
0.97), no individual (compared to 96) with an adjusted R2 greater than 0.95, and 109 individuals (compared
to 5) with an adjusted R2 smaller than 0.90. A main problem with the logarithmic specification is its
inability to capture convex time perceptions.

22The data is best fitted by the curve a = −3.64 + 4.7
b

(p-value < 0.001 for both parameters).
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ci,t+k, continuously along a convex budget set. Denoting (1 + r) the gross interest rate,

the budget constraint can be written as:

(1 + r)ci,t + ci,t+k = m (3)

We assume a time separable time discounting function Φi(t) of time t from the perspective

of time 0, and a CRRA utility of money:

U0(ci,t, ci,t+k) = Φi(t)
1

αi
(ci,t)

αi + Φi(t+ k)
1

αi
(ci,t+k)

αi (4)

where αi > 0 is the curvature parameter. To estimate the inter-temporal utility function

of each individual, we arbitrarily restrict attention to quasi-hyperbolic discount functions,

that is, functions of the form:

Φi(t) =

{
βiδ

t
i t > 0

1 t = 0

where δi ∈ (0, 1) is the one period discount and βi > 0 the time inconsistency parameter.

Note that βi = 1 corresponds to the standard exponential discounting model. A subject

is time inconsistent when βi 6= 1, exhibiting a present-bias when βi < 1 and a future-bias

when βi > 1. The subject chooses ci,t and ci,t+k by maximizing (4) subject to (3). The

optimal amounts are:

c∗i,0 =
m

(1 + r) +
(

(1 + r)βiδki

) 1
1−αi

and c∗i,t =
m

(1 + r) +
(

(1 + r)δki

) 1
1−αi

(5)

We fitted the model to the data obtained from the time discounting task (T D). For

each individual, we estimated by NLS and MLE the parameters αi, δi and βi of the

following regressions:

ci,0 =
m

(1 + r) +
(

(1 + r)βiδki

) 1
1−αi

+εi,0 and ci,t =
m

(1 + r) +
(

(1 + r)δki

) 1
1−αi

+εi,t (6)

where εi,0 ∼ N(0, σ2
i ) and εi,t ∼ N(0, σ2

i ). Notice that variations in delay lengths k and

interest rates (1 + r) allow for the identification of αi and δi. Variations in starting times

t allow for the identification of βi.

From the 120 initial subjects, we removed 19 subjects who put all the tokens in the

later option 44 or 45 times out of 45 (more than 97% of the time). Using a boxplot analysis

and the same definition as in footnote 19, we identified six extreme outliers (α̂i ' 0, α̂i > 2
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and/or β̂i > 4). These subjects were also excluded from the analysis.23 Figure 4 presents

the distributions of the (β̂i, δ̂i, α̂i) estimated parameters for the 95 remaining subjects

using MLE while Figure 5 graphically depicts the individual combinations of β̂i and δ̂i.
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Figure 4: Distribution of parameters in the time discounting task (β̂i, δ̂i, α̂i)

We obtained reasonable estimates. The estimates are also similar (and generally consis-

tent) with those in [AS] (see their Figure 3 in p. 3351).24 In particular, the vast majority

of our β̂i estimates are close to 1, implying no evidence of present-biased behavior (if

anything, just like in [AS] we observe a future bias, although this is likely due to small

measurement errors). This result is not excessively surprising given the [AS] methodology

employed, where “today” payments are out-lab and delayed by at least 2.5 hours. As

expected, the overwhelming majority of the δ̂i estimates are between 0.99 and 1.0 and

most of the α̂i estimates are above 0.85 (but still below 1).25

5 The relationship between time perception and time dis-
counting

We have established that the time perception and time discounting of each individual i

are well summarized by (ai, bi) and (βi, δi, αi), respectively. In this section, we address the

main question of the paper: the relationship between time discounting and time perception.

23Having non-reliable estimates for some subjects is not unusual in this type of exercise. For example,
among the 97 subjects in [AS], 2 did not converge, 2 made automatic choices, 22 chose the later option
more than 95% of the time and 7 were extreme outliers according to our definition.

24As expected, MLE and NLS give extremely similar estimates. The fit of the model is good. The
average R2 in our NLS estimation is 0.80.

25Aggregate estimates are also similar to [AS]: α = 0.922, δ = 0.9969 and β = 1.068 in our sample
compared to α = 0.897, δ = 0.9991 and β = 1.007 in [AS].
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Figure 5: Individual time discounting parameter estimates (β̂i, δ̂i).

5.1 Main hypothesis

We hypothesize that objective delays between consumption dates are evaluated in a sub-

jective manner, and the subjective estimates are used to choose between consumption

options over perceived delays. We should therefore observe a relationship between the

tendency to over- or under-represent true time and the willingness to delay gratification.

Formally, we posit that the discounting of an objective time interval for individual i,

Φi(·), corresponds to the time-weighting f(·) of the perceived length of that interval, θi(·).
Assuming for simplicity that f(·) is identical for all individuals, we have:

Φi(t) = f(θi(zt)) ∀i (7)

where z is the conversion rate between units of time in the discounting and perception

tasks.26 According to (7), differences in discount functions across individuals are related

to differences in their subjective perception of time. We impose the natural assumption

that f ′ < 0: other things being equal, a reward is valued less if the perceived interval of

time before it occurs is longer (in other words, for a given individual, a prize in a perceived

short time is strictly better than a prize in a perceived long time). For now, however, we

do not impose any specific functional shape for the decreasing function f(·).27 This alone

immediately implies:

θi(zt) ≷ θj(zt) ⇔ Φi(t) ≶ Φj(t) (8)

26In our case, given we formulated the time perception task in seconds (τ = 1 second) and the time
discounting task in days (t = 1 day), we have z = 60× 60× 24 = 86, 400.

27In section 7 we propose a quasi-hyperbolic specification for the time-weighting function and provide a
structural estimation.
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The relationship in (8) formalizes in the simplest possible terms the intuitive idea that if

an objective length of time zt is subjectively perceived as a longer interval by subject i

than by subject j (θi(zt) > θj(zt)), then subject i is less willing than subject j to postpone

a reward by that amount of time (Φi(t) < Φj(t)). The relationship, however, is not causal.

In particular, it is consistent with the alternative interpretation that if subject k is more

impatient than subject l, then subject k is also more likely to perceive a unit of time as

subjectively longer than subject l.28

Hypothesis Subjects for whom one unit of time is perceived as longer are less willing to

delay gratification by that amount of time.

5.2 Main result

Recall that our time perception task elicits perceived durations in the range of minutes

while our time discounting task elicits inter-temporal choices in the range of weeks. Ideally,

we would like to determine whether the tendency to under or over-evaluate time in the

estimated range of the T P task is related to the patience level in the estimated range of

the T D task.

As mentioned in section 2.2, the non-linearity of the time perception function is po-

tentially challenging: a subject with b̂i < 1 may overestimate short intervals and under-

estimate long intervals whereas a subject with b̂j > 1 may exhibit the opposite pattern.

Fortunately, given a power functional form θ(·) and the empirical relationship between the

estimates âi and b̂i, it is possible to determine a time interval after which our subjects can

be stably ranked in terms of their perception of time.29

In order to find such time interval in our data, we performed the following exercise.

For each subject i and given his estimated parameters (âi, b̂i), we evaluated his perception

of an interval of length τx (that is, θ̂i(τx) = âiτ
b̂i
x ) and then ordered all subjects from

maxi {θ̂i(τx)} to mini {θ̂i(τx)}. We repeated the same exercise for an interval of length

τx′ . We then asked by how much this ranking changed between τx and τx′ . We found

that the ranking of 28% of our subjects changed by more than 5 positions between 588

seconds (3 times the highest estimated interval) and 1 hour. This percentage dropped to

20% between 1 hour and 1 day, to 1% between 1 day and 7 days and to 0% thereafter.

Overall, subjects in our sample can be ranked with stability regarding their perception of

time for intervals above 1 hour.

28There are other interesting issues not captured by this simple formulation, such as the role of antici-
pation and regret on subjective time evaluation.

29Extrapolating time perception presupposes that the parameter estimates remain accurate for predicting
time perception out of the range of our measurements. As noted earlier, this assumption is plausible given
the empirical knowledge and theoretical framework developed in psychophysics.
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We used a similar methodology to determine for which time intervals we can rank sub-

jects by their level of impatience. We took the estimated (β̂i, δ̂i) parameters to determine

for each individual i the value at date 0 of one unit of consumption at different dates

tx: 1 hour, 6 hours, 12 hours, 18 hours, 1 day and 7 days. We then ranked our subjects

by their level of impatience at each of these dates. We found that 27% of the subjects

changed ranks by more than 5 positions between 1 day and 7 days and none changed ranks

between any of the shorter intervals. Subjects can then be ranked reasonably steadily in

terms of their time discounting for all time horizons, and extremely steadily for horizons

below 1 day. The result should not be surprising for the reader, given that in our sample

the estimated β̂i parameter of most subjects is close to 1 (indeed, if the discount rate of

all subjects was exponential, no rank would ever change).

The overall conclusion of this exercise is that subjects in our sample can be ranked

reasonably consistently in terms of time perception and time discounting for time intervals

above 1 hour. Notice that there is also the issue of extrapolation: extreme downward

extrapolation of time discounting intervals or upward extrapolation of time perception

intervals result in excessively noisy, hence unreliable, measurements.

Given the exclusion criteria considered earlier for our estimations, we kept for the

analysis the 92 subjects for whom we obtained accurate and reasonable estimates in both

the T P and T D tasks.30 We then considered the smallest upward extrapolation for which

subjects’ time perception could be ranked steadily and, at the same time, the largest

downward extrapolation that provided meaningful estimates for time discounting, namely

1 hour (1h). Similarly, we considered the smallest downward extrapolation for which

subjects’ time discounting could be ranked steadily and, at the same time, the largest

upward extrapolation that provided meaningful estimates for time perception, namely 1

day (1d). We then determined the correlation between discounting and perception at the

individual level over that range. Outcomes are summarized in Table 1 and the Result.

Result There is a negative and statistically significant correlation between time perception

and time discounting in the 1 hour to 1 day range.

The result provides support for our Hypothesis.31 Impatience is associated with the over-

estimation of perceived time, as predicted by our simple model. Subjects who produce a

30Recall that we excluded 3 extreme outliers in T P, 6 extreme outliers in T D and 19 subjects with
insufficient variance in T D. Removing 23% of the sample is not ideal. In section 6, we discuss the
robustness of our results to other (more or less stringent) sample specifications.

31Results are robust to other horizons provided we do not excessively increase the extrapolation. For
example, PCC = −0.25, p-value = 0.019 for the correlation between 1h (T P) and 7d (T D) and PCC
= −0.21, p-value = 0.040 for the correlation between 1h (T P) and 14d (T D).
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Measure PCC p-value

1d (T P) - 1d (T D) -0.22 0.038
1h (T P) - 1d (T D) -0.26 0.013
1h (T P) - 1h (T D) -0.26 0.013
1d (T P) - 1h (T D) -0.22 0.036

Table 1: Correlation between time perception estimates (âi(zt)
b̂i) and time discounting

estimates (β̂iδ̂
t
i).

higher interval in the time perception task tend to consume earlier.32 Figure 6 represents

the scatterplot of predicted time perception at 1 hour and predicted time discounting of

1 day.33
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Figure 6: Estimates of time perception at 1 hour and time discounting at 1 day.

Overall, the data provides support for the link between subjective perception of time

and impatience, and the existence of a time-weighting function f(·) that maps perceived

time into discount rates. From Figure 6, it seems that the negative relationship is convex

and that there is substantial heterogeneity across individuals in the valuation of future

32We perform the same analysis using a Bayesian method and find similar results: bayesian PCC = −0.08
(respectively−0.12 , −0.13 and −0.08) with a likelihood that the correlation is negative of 0.75 (respectively
0.85, 0.87 and 0.76) for the correlations in the order displayed in Table 1.

33The reader may wonder whether the result is driven by a few observations that are “visually distant”
from others in the graph. If (for ad hoc reasons) we decide for example to exclude from our sample the 3
subjects who made the most extreme choices, we obtain the same correlation magnitude and significance.
More rigorous robustness checks are presented in section 6.
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rewards and the subjective evaluation of delays.34

It is important to emphasize that the estimates (âi, b̂i) on one hand and (β̂i, δ̂i) on the

other are obtained from independent datasets, T P and T D. There is a priori no reason

(other than the endogenous relationship emphasized by our model) why the measures

constructed from these two datasets should correlate. And yet, there is evidence that the

mechanisms underlying time perception and time discounting are linked. Furthermore, the

data collected in each task is noisy, which weakens the correlation between perception and

discounting. This means that the correlation obtained is likely to be underestimated.35

To better investigate the relationship between time perception and time discounting,

we run a regression between time discounting of 1 day and time perception of 1 hour. There

is an obvious difficulty, since the exercise requires choosing which of the two measures is

the dependent and which one is the explanatory variable. We include several measures of

relevance. First, subjects who overestimate time should in principle complete more filler

tasks. A simple correlation exercise indicates that subjects who report longer durations

complete more filler tasks (PCC = 0.54, p-value < 0.001). They are successful more often

(PCC = 0.45, p-value < 0.001) but also make more mistakes (PCC = 0.21, p-value <

0.036). Overall, their performance is not significantly different. We use the number of filler

tasks completed successfully (Filler score) as a control. Second, it may also be the case

that cognitive abilities, as measured by IQ and GPA scores affect discounting attitudes. We

therefore include the GPA score reported by subjects (GPA score) and the results of our

cognitive ability test (IQ score). We also include a dummy for gender (Male), a dummy for

first language (Non English), the percentage bias in the retrospective task (Retrospective)

as well as α̂i estimates to control for intrinsic preference attitudes (Preference). Table 2

reports our results. Model 1 corresponds to the simple correlation analysis (and yields the

same significance). Model 2 includes the various control measures.36

Even though the linear model explains only very partially the variance in the data,

it allows us to identify significant and insignificant correlations between our measures.

34Notice also that the discounting is above 1 for many subjects, which is obviously unreasonable. The
reason is that many β̂i-estimates are above 1, so the downward extrapolation of the parameters to one day
results in unrealistically high patience levels. Remember, however, that the main objective of our analysis
is not to estimate levels of time discounting and time perception but to be able to perform comparisons
across individuals. Under no extrapolation (e.g., a discounting of 5 weeks), then more than 90% of subjects
exhibit reasonable levels of preference for the present.

35Experimental data is intrinsically noisy and subject to measurement errors. Given this noise, the true
coefficient of correlation between time perception and time discounting is by construction higher than the
coefficient of correlation between their noisy measurements (see Gillen et al. (2015) for a statistical method
that corrects for measurement errors).

36The effects are preserved if we replace the explanatory variable 1h (T P) by 1d (T P) or if we use as
the dependent variable 1-hour (T D) instead of 1-day (T D). Regressions results are very similar, except
that significance is increased when shorter time intervals are used.
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Model 1 Model 2

1h (T P) -2.844 e-05∗∗ -3.735 e-05∗∗∗

Filler score — 3.267 e-03
GPA score — -5.677 e-02
IQ score — 2.276 e-02
Male — -1,739 e-02
Non English — 1.278 e-02
Preference — -3.147 e-01
Retrospective — 7.963 e-02
constant 1.160† 1.30†

Adj. R2 0.06 0.09

significance levels: ∗∗ = 5%, ∗∗∗ = 1%, † = 0.1%

Table 2: Regression analysis of 1-day discount rate (T D).

The results indicate that the correlation between perception and discounting emphasized

previously persists in the regressions, with an increase in significance when we include

control variables.37 By contrast, there is no evidence that any of the other measures has

an impact on time discounting in our sample.38

6 Robustness

We performed a number of robustness checks. The conclusion is that our main findings

are, to a large extent, robust to different specifications. The reader who is not interested

in the details can skip the section without loss.

Rank Correlations. We have argued that correlations and statistical significance are

similar in the 1 hour to 1 day range because they are driven mainly by rankings (not

point estimates), and we have shown that rankings are stable in this interval period.

However, it can be useful to ignore values and simply determine rank correlations between

time perception and time discounting. Table 3 presents the Spearman and Kendall rank

correlation coefficients. We test for the hypothesis that correlations are negative and

37We performed a number of robustness checks. First, to account for outliers, we ran a robust regression
using M estimation (Huber method) and we found that the coefficient for T P was significantly negative
(p-value = 0.017 for Model 1 and p-value = 0.004 for Model 2). Second, we ran a Bayesian regression and
came to the same conclusion (p-value = 0.013 for Model 1 and p-value = 0.003 for Model 2).

38We did not find an effect of gender, IQ or GPA on time perception either. The absence of gender
differences departs from the results in recent studies on time discounting (Dittrich and Leipold, 2014) and
time perception (Koglbauer, 2015).
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report one-sided tests.

Measure Spearman p-value Kendall p-value

1d (T P) - 1d (T D) -0.18 0.045 -0.12 0.039
1h (T P) - 1d (T D) -0.17 0.046 -0.13 0.038
1h (T P) - 1h (T D) -0.17 0.057 -0.11 0.051
1d (T P) - 1h (T D) -0.16 0.057 -0.12 0.048

Table 3: Spearman / Kendall rank correlation between time perception and time dis-
counting (one-sided tests).

While the general results are robust, both the correlation coefficients and the statistical

significance are weaker when we consider the correlation of ranks instead of values.

Time perception sensitivity. A possible issue regarding time perception estimates is

that they might be excessively sensitive to the (few) observations obtained in the time

perception task. If this is the case, the extrapolation to unit of times outside the range of

our observations may be problematic. To investigate this issue, we removed the longest in-

terval (196s) and estimated the parameters (â8
i , b̂

8
i ) with the 8 remaining observations. We

found that, on average, the curvature of the time perception function was under-estimated

(0.84 vs. 0.93) indicating that the last observation carried significant information.39 When

we predicted the response of each participant to the missing 196s interval, we found that

the predictions co-varied with the actual responses, although less than perfectly (PCC

= 0.75, p-value < 0.001). With these new estimates, subjects in our sample could be

ranked with stability on their perception of time for intervals above 20 minutes. We there-

fore extrapolated time perception to 20 minutes and correlated 20m (T P) and 1d (T D).

Despite the loss in precision, the correlation was still negative. The significance of point

correlation was reduced, but not that of rank correlations (PCC = −0.15, p-value = 0.077;

Spearman = −0.19, p-value = 0.033; Kendall = −0.13, p-value = 0.034; one sided-tests).

For comparison, we also extrapolated time perception to our 1 hour benchmark and we ob-

tained similar results (PCC = −0.12, p-value = 0.13; Spearman = −0.19, p-value = 0.033;

Kendall = −0.13, p-value = 0.030; one sided-tests). We also conducted the same analysis

by removing the shortest interval, then the median interval. As expected, these observa-

tions carried less information than the longest interval. Indeed, the correlation between

1h (T P) and 1d (T D) was similar to the one obtained in Table 1 (PCC = −0.28, p-value

= 0.004; Spearman = −0.22, p-value = 0.016; Kendall = −0.15, p-value = 0.015 when the

39More precisely, denoting θ8(·) the perception of time (in seconds) resulting from our new estimates,
we found that θ8i (1h) = 853 + 0.7× θi(1h) (p-value < 0.001).
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shortest was removed; PCC = −0.24, p-value = 0.01; Spearman = −0.20, p-value = 0.025;

Kendall = −0.15, p-value = 0.020 when the median was removed; one sided-tests). The

overall conclusion of this robustness exercise is that, while each interval (and especially the

longest one) is important in determining the shape of the time perception function, the

negative correlation between time perception and time discounting does not hinge upon

one single measure.

Alternative noise structure. To assess whether the additive noise structure assumed

in the paper has a crucial impact on our time perception estimates, we ran a new set of

regressions using a different (multiplicative) noise formulation:

yis = aiτ
bi
s uis (9)

Linearizing, we estimated parameters from the equation:

log (yis) = log (ai) + bi log (τs) + log (uis) (10)

where log (uis) ∼ N(0, σ2
i ). This new model fitted the data significantly worse. The R2 was

greater with the new model for only 4 out of 120 participants. However, the parameters

estimated with the additive and multiplicative error structures were strongly correlated

(PCC between âi estimates = 0.70, p-value < 0.001; PCC between b̂i estimates = 0.72,

p-value < 0.001). After removing outliers in a similar fashion as before, we obtained a set

of 90 subjects with reliable estimates in both tasks. We replicated the same analysis as in

Table 1 and we report the results in Table 4.

Measure PCC p-value

1d (T P) - 1d (T D) -0.21 0.041
1h (T P) - 1d (T D) -0.25 0.015
1h (T P) - 1h (T D) -0.25 0.014
1d (T P) - 1h (T D) -0.22 0.039

Table 4: Correlation between time perception estimates derived from the multiplicative
noise model and time discounting estimates.

As we can from Tables 1 and 4, correlations and statistical significance are remarkably

similar in both cases, with the additive model slightly outperforming the multiplicative

one.

Analysis with and without outliers. To check whether our results are sensitive to the

exclusion criteria used to retain our 92 subjects, we construct two new samples. First,
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a large sample, where we reintroduce subjects who exhibit little variance in behavior in

the discounting task (but not the 2 subjects who exhibit no variance at all). Given some

of them also have extreme estimates, the large sample is composed of 106 subjects (88%

of participants). Second, a small sample that excludes outliers which are less extreme

compared to the main sample.40 The small sample is composed of 78 subjects (65% of

participants). It corresponds to the dataset analyzed in detail in the previous version of

the paper. Correlations are reported in Table 5 and the results of the regression analysis

are collected in Table 6.

Small sample (78) Large sample (106)
Measure PCC p-value PCC p-value

1d (T P) - 1d (T D) -0.25 0.027 -0.20 0.038
1h (T P) - 1d (T D) -0.23 0.043 -0.24 0.013
1h (T P) - 1h (T D) -0.23 0.043 -0.24 0.013
1d (T P) - 1h (T D) -0.25 0.026 -0.20 0.036

Table 5: Correlation between time perception estimates and time discounting estimates
varying the exclusion criteria.

Time discounting and time perception are correlated in the 1 hour to 1 day range both

when we consider the small and the large samples.41 Overall, the outliers do not seem to

amplify or diminish the main finding obtained earlier. The results are also supported by

a robust regression approach (p-value = 0.007 for the small sample and p-value = 0.051

for the large sample) and a bayesian approach (p-value = 0.010 for the small sample and

p-value = 0.037 for the large sample). Again, all results are preserved if we explain 1 hour

(T D) instead of 1 day (T D).

40The exclusion criteria were ai < 0.16, ai > 8, αi ' 0, αi > 1, βi < 0.3, βi > 4, δi > 1 and subjects
who put all the tokens in the later option 44 or 45 times out of 45. We also omitted subjects for whom we
had convergence problems in the estimation (we had to change the criteria of convergence to find reliable
estimates).

41We also considered other subsets. If, instead of reintroducing subjects exhibiting little variance in
behavior, we reintroduce subjects whose time perception estimates are extreme outliers (new sample size
is 95 subjects), then PCC = −0.23 (p-value = 0.028). If we reintroduce subjects whose time discounting
estimates are extreme outliers (new sample size is 97 subjects), then PCC = −0.20 (p-value = 0.054).

We can also exclude subjects who are close to the 80% threshold performance in the filler task, as they
may have artificially delayed finishing the time perception task so as to increase the number of filler tasks.
For exclusion criteria 77% to 83% and 79% to 81%, we get PCC = −0.25 (p-values = 0.020 and 0.019
respectively).

Finally, we can also exclude subjects with poor performance. If they anticipate that they are unlikely
to be paid, they have reduced incentives to measure time accurately. For exclusion criteria < 80% and
< 75%, we get PCC = −0.27 (p-values = 0.013 and 0.010 respectively).
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Small sample Large sample

1h (T P) -2.145 e-05 ∗∗∗ -3.541 e-05 ∗∗∗

Filler score 1.429 e-03 2.561 e-03
GPA score 5.198 e-02 -1.143 e-02
IQ score 2.235 e-03 2.345 e-02
Male 2.184 e-02 -3.742 e-02
Non English 1.148 e-02 -2.358 e-02
Preference 2.119 e-02 -1.305 e-01
Retrospective 5.881 e-02 4.053 e-02
constant 0.838 † 1.044 †

# obs. 78 106

Adjusted R2 0.091 0.039

significance levels: ∗∗ = 5%, ∗∗∗ = 1%, † = 0.1%

Table 6: Regression analysis of 1-day discount rate (T D) varying the exclusion criteria.

Weibull specification. Since the quasi-hyperbolic discount function does not always

capture accurately the discounting pattern of individuals, we follow Andersen et al. (2014)

and consider the parametric specification proposed by Read (2001) to account for time

subadditivity, namely the Weibull function:

ΦW
i (t) = exp(−µit(1/si))

with µi > 0 and si > 0. This is comparable to quasi-hyperbolic discounting in that it is

also a two-parameter function that boils down to time-consistent exponential discounting

when one of the parameters takes a specific value (in our formulation, when si = 1). For

each individual, we fitted the parameters of the new discounted utility function and we

obtained estimates for αi, µi and si. We found that the Weibull and quasi-hyperbolic

models perform on aggregate very similarly according to the Akaike Information Criterion

(AIC).42 We then conducted the same correlation analysis as we did before with the 92

subjects of the main model under two scenarios. First, assigning all the subjects to the

Weibull discounting function (Weibull). Second, assigning each subject to the model that

fitted best, quasi-hyperbolic or Weibull (Best fit). Table 7 reports the same information

as Table 1 for these two cases.

42To be precise, the Weibull model performed slightly better. However, this was due to two subjects
who were significantly better captured by that model. Without considering these two subjects, the average
performance of the two models was almost indistinguishable (the mean AIC was 237 for the quasi-hyperbolic
model and 234 for the Weibull model).
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Weibull Best fit
Measure PCC p-value PCC p-value

1d (T P) - 1d (T D) -0.27 0.009 -0.23 0.026
1h (T P) - 1d (T D) -0.34 0.001 -0.26 0.011
1h (T P) - 1h (T D) -0.41 0.001 -0.23 0.026
1d (T P) - 1h (T D) -0.34 0.001 -0.21 0.044

Table 7: Correlation between time perception estimates and time discounting estimates
(Weibull or Best fit).

While the fit of the two models is similar, the correlation coefficient is higher and

the statistical significance stronger with the Weibull specification than with the quasi-

hyperbolic or the best fit. This, however, should not be overemphasized as it is driven by

a small subset of individuals. Overall, the negative correlation between time discounting

and time perception seems robust to the specification of the discounting function.

Time perception and discounted utility. Our structural approach implicitly assumes

that the utility model is correct. If, contrary to our specification, utility and discount are

not fully separable in the “true model” that generates the data, α̂i estimates may capture

some elements of discount while β̂i and δ̂i estimates may capture some elements of utility.

To address this possibility, we correlate time perception with the discounted utility of

consumption of several units. Formally, we take the CRRA utility representation of our

model and extend the relationship in equation (8) to:

θi(zt) ≷ θj(zt) ⇔ βiδ
t
i

1

αi
(c)αi ≶ βjδ

t
j

1

αj
(c)αj (11)

In words, the hypothesis is that if a subject perceives one unit of time as a longer interval

than another subject, he will values less the consumption of c units after that amount of

time. Table 8 reports the same correlation exercise as in Tables 1 and 7 for the valuation

of 5 units of consumption.43

The statistical significance of the correlations is stronger compared to Table 1, sug-

gesting that the perception of time affects the evaluation of delayed rewards rather than

simply the evaluation of delays.

Non-parametric test. Our data does not allow us to make meaningful non-parametric

tests based on general patterns of consumption (such as the percentage of tokens allocated

43Naturally, units matter for this exercise. We used 5 units because it roughly corresponds to the dollar
amount they had to evaluate in T D. We tried other units around that number and found similar results.
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Measure PCC p-value

1d (T P) - 1d (T D) -0.23 0.026
1h (T P) - 1d (T D) -0.28 0.008
1h (T P) - 1h (T D) -0.28 0.007
1d (T P) - 1h (T D) -0.23 0.025

Table 8: Correlation between time perception estimates (âi(zt)
b̂i) and discounted utility

estimates (β̂iδ̂
t
i

1

α̂i
(c)α̂i).

to early consumption) and general tendency to underestimate time (such as the proportion

of times the subject underestimated the true time). Here is why. The non-linearity of the

perception function strongly indicates that the estimated curvature is more important to

predict over- vs. under-estimation of long intervals than the observations in the computed

range. Also, the decision to allocate tokens early depends on both the degree of patience

and the concavity of the utility function, so the percentage allocated to the earliest date is

not capturing well the attitude of a person towards delays. However, one simple analysis

we can conduct is to divide our sample between those who underestimate 1 hour and

those who overestimate 1 hour. We find that the average discount of 1 day is different for

these two groups (1.11 vs. 0.99, p-value of a two-sample t-test = 0.005, difference of means

greater than 0 with probability 0.934 with a Bayesian t-test).44 In words and reinforcing

previous findings, subjects who underestimate 1 hour exhibit on average more patience

than those who overestimate it.

Correlations between actual measurements. Our result relies on the assumption that

time perception estimates obtained through measurements in the range of seconds to min-

utes can be extrapolated to one hour and above. Even though it is a plausible assumption,

one would like to demonstrate a relationship between time perception and time discounting

based on actual experimental measurements. Remember, however, that the main reason

to consider intervals of time of at least one hour is to ensure that the rank of subjects in

terms of their time perception is stable.

We can follow a different strategy. Instead of determining the interval after which the

rank of the majority of subjects is stable, we can restrict attention to the subset of subjects

who can be stably ranked after one of the measured intervals. As the time delay decreases,

the corresponding subset shrinks. We therefore select the largest interval for which reports

44We obtained similar result when dividing the sample between those who underestimate one day and
those who overestimate it (1.10 vs. 0.99, p-value of a two-sample t-test = 0.007, difference of means greater
than 0 with probability 0.917 with a Bayesian t-test).
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are made, namely 196s, and retain for the analysis the 58 subjects whose rank is stable

after that interval. Columns 1 and 2 in Table 9 presents the Pearson’s correlation for

these individuals between the estimated time perception in the longest interval effectively

measured (196s) and the discounting at 1 day or 1 hour (rows 1 and 2). It also presents

the same correlation using the actual reports at 196s rather than the estimations (rows

3 and 4). Columns 3 and 4 in Table 9 report the Bayesian correlation and the posterior

probability that the correlation is negative.

Subjects with stable rank (58)
Measure PCC p-value Bayes Corr. prob. of (-)

196s (T P) - 1d (T D) -0.41 0.002 -0.20 0.91
196s (T P) - 1h (T D) -0.40 0.002 -0.20 0.91

196s report - 1d (T D) -0.39 0.002 -0.18 0.89
196s report - 1h (T D) -0.39 0.002 -0.18 0.89

Table 9: Correlation between time perception estimates or time perception reports at
196s and time discounting estimates for subjects with stable ranking.

The result indicates that, for subjects with stable ranking, the negative correlation be-

tween their time perception on a measured interval and their time discounting extrapolated

at 1 hour or 1 day is stronger and statistically more significant than the one documented

in Table 1. In other words, as long as the underlying time perception of subjects is stable

on the measured time interval –even if such interval is small– it is possible to predict

their impatience from it. In Appendix A3, we present the same information as in Table

9, except that we use the large sample of 106 individuals. The PCC remains negative

but becomes statistically not significant. The probability that the Bayesian correlation

is negative remains significant. The decreased significance is not surprising since adding

these subjects amounts to introducing individuals whose ranking changes between the last

estimated interval and the period of interest.

As a general conclusion, the analyses presented in section 6 suggest that the rela-

tionship between perceived time and preference for the present is robust: people who

overestimate objective intervals of time are more inclined to consume early.

7 Individual time-weighting function

From the T P dataset, we showed that individual i’s time perception is well summarized by

θi(zt) = ai(zt)
bi . From the T D dataset, we found that individual i’s discount function can
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be approximated by Φi(t) = βiδ
t
i . Our analysis revealed that the discount function can be

interpreted as the time weighting of perceived time. Even though a given perceived time

interval is reached for different true time intervals for different individuals, its weighting

is similar across individuals. Overall, we have shown that the data can be summarized

reasonably well by a common weighting function f(·), that transforms perceived times

into discount rates Φi(t) = f(θi(zt)). Still, we noted some individual differences. The

purpose of this section is to investigate this heterogeneity in more detail.

To do so, we posit that the weighting function that transforms perceived time into

discount has the same structure for every participant but it is parametrized individually.

More precisely, we assume:

Φi(θi(zt)) = β′id
′ ai(zt)bi
i

This quasi-hyperbolic formulation is the same as the one we used to estimate discounts,

except that participants are now assumed to discount payoffs with respect to their per-

ception of time rather than the true time. It also uses one second as the unit interval of

time, so d′i can be interpreted as the discount per second. Notice that if we set δ′i ≡ d′i
zbi ,

then we can rewrite the previous function using one day as the (standard) unit of time:

Φi(θi(t)) = β′iδ
′
i
ai(t)

bi

Our objective is to revisit the T D data and to propose a new discounting model driven

by perceived time rather than true time. Following the very same optimization procedure

as in section 4, the optimal consumption of individual i at date t is:

c∗∗i,0 =
m

(1 + r) +
(

(1 + r)β′iδ
′
i
ai(k)bi

) 1
1−α′

i

and c∗∗i,t=
m

(1 + r) +
(

(1 + r)δ′i
ai(t+k)bi−ai(t)bi

) 1
1−α′

i

To make the estimation comparable to that in section 4, we do not estimate all 5 param-

eters again. Instead, we import the time perception parameters âi and b̂i estimated from

the dataset T P and we estimate by MLE the remaining three parameters (β̂′i, δ̂
′
i, α̂
′
i) in

dataset T D exactly as we did before. Figure 7 presents the distributions of the (β̂′i, δ̂
′
i, α̂
′
i)

estimated parameters.

A comparison between Figure 4 and Figure 7 suggests that the distribution of esti-

mated parameters are remarkably similar when we consider perceived time rather than

true time. We find that β̂i and β̂′i are positively correlated (PCC = 0.77, p-value < 0.001)

and so are α̂i and α̂′i (PCC = 0.91, p-value < 0.001). Said differently, participants have

very similar time inconsistency and curvature estimates in both models. Interestingly,

even though the distributions of δ̂i and δ̂′i are very similar, the parameters are not sig-

nificantly correlated (PCC = 0.13, p-value = 0.228). This is not surprising because δ̂′i
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Figure 7: Distribution of parameters (β̂′i, δ̂
′
i, α̂
′
i)

is now applied to perceived time and individuals are highly heterogeneous in their time

perception. The new parameter is therefore adjusting for the individual perception biases.

Formally, the counterpart of δ̂ti is now δ̂′i
atb so, unlike for parameters β and α, correlations

of δ across models cannot be studied independently of t (for that very same reason, δ̂′i
cannot be interpreted as the daily discount factor). Overall, the model introduced here

is a reinterpretation of the standard quasi-hyperbolic discounting model in terms of per-

ceived time. According to AIC, both models perform very similarly (AIC = 236 for the

initial model and AIC = 237 for the new model), suggesting that information regarding

time perception is useful to describe their discounting attitude.

The main conclusion of this section is that a model in which time perception affects the

way we perceive delays and evaluate future rewards is plausible. On the other hand, it also

implies that the standard model based on objective delays is a reasonable approximation

too. Either way, the heterogeneity we observe suggests that other mechanisms are likely to

be at play, so we cannot predict with certainty how a subject will discount future rewards

based on how he reports experienced time. In Appendix A4 we take another look at

heterogeneity by clustering individuals according to their estimated time perception and

time discounting at 1 day.

8 Concluding remarks

This paper provides experimental evidence on the relationship between time perception

and time discounting. Our data reveals a negative correlation between the two: subjects

who provide higher estimates of time are less willing to delay gratification. This result

suggests that our ability to delay consumption is related to our mental representation of

delays between now and the future. Our result is also consistent with the hypothesis that
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an underlying internal clock governs time representations irrespective of the unit of time.45

Time discounting and time preferences have been traditionally considered as prim-

itives in decisions involving time trade-offs. Our evidence suggests that time keeping

mechanisms account partially for those decisions. Therefore discount functions should

be seen as reduced forms that capture time keeping rather than primitives. Even though

more research is needed to evaluate the details of the relationship between time perception

and inter-temporal trade-offs, our study offers a first promising look into the black box.

Our result is consistent with a growing body of the literature that studies the un-

derlying mechanisms of time related evaluations. Prospective timing has been associated

with working memory, a function performed by the dorsolateral prefrontal cortex (dlPFC)

(Grondin (2010); Lewis and Miall (2006)). Time representation has been shown to involve

the striatum and basal ganglia (Ivry and Spencer (2004); Meck (2005)). Recent evidence

in neuroscience supports the idea that the dlPFC and the striatum are also implicated

in time discounting (Van den Bos et al., 2014). This provides a rationale for why time

perception and time discounting should be related, as indicated by our data.

The result is also in line with findings obtained in the time discounting and time

perception literatures over the life cycle. It has been shown that the subjective perception

of the passing time tends to speed up with age, so that people increasingly underestimate

time as they age (Block et al. (1999); Coelho et al. (2004)). In parallel, children succumb

to immediate gratification while older adults are typically willing to wait for rewards

(Green et al. (1999); Lockenhoff et al. (2011)). In other words and consistent with our

findings, children are impatient and overestimate time whereas older adults are patient

and underestimate time. Interestingly, the dlPFC, which has been shown to be at the

core of time related judgments, is late to develop in children (Casey et al., 2005) and

early to age (Raz et al., 2005). These points taken together suggest that the relationship

between time perception and time discounting and the changes over the life cycle are no

coincidence.

The correlation between perceived time and discounting indicates that subjects judge

future delays based on current experiences. While our result does not prove causality

between time perception and time discounting, it suggests that manipulating the current

perception of time may affect inter-temporal decisions. The literature in psychophysics

has already shown that time perception can be altered by a long series of stressors in-

cluding changes in body temperature and environmental factors (Droit-Volet and Meck

(2007); Meck and MacDonald (2007)). On the discounting side, Ebert and Prelec (2007)

45This conclusion is strengthened by the fact that, according to our retrospective task, there is also
a relationship between retrospective and prospective time evaluation (see Appendix A2). Overall, we
conjecture that a common mechanism is involved in all time related evaluations.
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have demonstrated that time preferences can also be affected by pressure and attention

manipulations. A natural alley for future research is to investigate wether the relation-

ship between time perception and time discounting holds with manipulations and whether

it is possible to induce patient choices in an efficient and ecologically valid way. Indeed,

most of the policies that target behavior rely on information transmission (tell people that

saving for the future is good) or exploit behavioral biases (changing the default option).

An alternative is to design environments that promote beneficial decision-making. If time

perception is an important driver of time-related decisions and if it can be manipulated,

creating environments in which better time evaluations are made should improve the way

people make inter-temporal trade-offs.

Our study follows the methodology and definitions developed in psychophysics. In that

literature, time perception refers to the relationship between the actual and the perceived

change in physical time. Subjective time is measured using timing tasks and it refers

to the interval people report when they target an objective time interval given by the

experimenter. This has two implications. First, our measure of time perception does not

refer to a loose statement about how long a delay “feels” to a subject. For that approach,

one could develop different definitions as well as different measures of subjective time

(e.g., verbal assessments). However, this would depart from the methodologies in both

psychophysics and economics. Second, there is a difference between uncorrected time

perception, referring to the intrinsic evaluation of a time interval, and corrected time

perception, referring to the correction a subject might apply to make a report as accurate

as possible despite his intrinsic evaluation. In our study, we only analyze time perception

post-correction. It shall be noted that the same distinction may be relevant for time

discounting and, there again, our study applies to the post-correction case.

Finally, the idea that a subject may correct his intrinsic evaluation of a time interval

refers to “perception awareness.” Some individuals may be aware of their time perception

bias and correct their estimates accordingly. Even though we cannot address this phe-

nomenon with the data collected, we believe that a better understanding of the differences

between corrected and uncorrected time perception is directly relevant to decision-making.

In a follow-up research (Brocas et al., 2018) we investigate the issue of awareness of time

perception biases. We show in an incentivized experiment that subjects are aware of their

biases, but only partially, and they do not fully correct for them when producing time.

This explains why people are predictably and systematically late despite some degree of

knowledge of this tendency, and why they tend to correct for it (but not to its full extent)

when it matters most. For the present paper, it suggests that the correlation highlighted

in the text is likely to be an underestimate of the correlation between discounting and

“true” perception.
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Appendix

Appendix A1. Time discounting tasks

!
!

Budget!sets!in!the!time!discounting!task!
!

!
!

First!5!time!discounting!tasks:!(t,!k)!=!(0,!21)!

Sheet2

Page 1

Set t k v(t) v(t+k) (1+r) Daily (1+r)% Set t k v(t) v(t+k) (1+r) Daily (1+r)% Set t k v(t) v(t+k) (1+r) Daily (1+r)%
1 0 21 $1.484 $1.532 1.032 0.152 16 7 21 $1.484 $1.532 1.032 0.152 31 21 21 $1.484 $1.532 1.032 0.152
2 0 21 $1.438 $1.532 1.065 0.302 17 7 21 $1.438 $1.532 1.065 0.302 32 21 21 $1.438 $1.532 1.065 0.302
3 0 21 $1.339 $1.532 1.144 0.643 18 7 21 $1.339 $1.532 1.144 0.643 33 21 21 $1.339 $1.532 1.144 0.643
4 0 21 $1.236 $1.532 1.239 1.028 19 7 21 $1.236 $1.532 1.239 1.028 34 21 21 $1.236 $1.532 1.239 1.028
5 0 21 $1.532 $1.752 1.144 0.641 20 7 21 $1.532 $1.752 1.144 0.641 35 21 21 $1.532 $1.752 1.144 0.641
6 0 42 $1.484 $1.532 1.032 0.076 21 7 42 $1.532 $1.532 1.000 0.000 36 21 42 $1.484 $1.532 1.032 0.076
7 0 42 $1.438 $1.532 1.065 0.151 22 7 42 $1.484 $1.532 1.032 0.076 37 21 42 $1.438 $1.532 1.065 0.151
8 0 42 $1.339 $1.532 1.144 0.321 23 7 42 $1.438 $1.532 1.065 0.151 38 21 42 $1.339 $1.532 1.144 0.321
9 0 42 $1.236 $1.532 1.239 0.512 24 7 42 $1.339 $1.532 1.144 0.321 39 21 42 $1.236 $1.532 1.239 0.512

10 0 42 $1.532 $1.752 1.144 0.320 25 7 42 $1.236 $1.532 1.239 0.512 40 21 42 $1.532 $1.752 1.144 0.320
11 0 63 $1.482 $1.532 1.034 0.053 26 7 63 $1.482 $1.532 1.034 0.053 41 21 63 $1.482 $1.532 1.034 0.053
12 0 63 $1.326 $1.532 1.155 0.229 27 7 63 $1.326 $1.532 1.155 0.229 42 21 63 $1.326 $1.532 1.155 0.229
13 0 63 $1.159 $1.532 1.322 0.444 28 7 63 $1.159 $1.532 1.322 0.444 43 21 63 $1.159 $1.532 1.322 0.444
14 0 63 $0.981 $1.532 1.562 0.710 29 7 63 $0.981 $1.532 1.562 0.710 44 21 63 $0.981 $1.532 1.562 0.710
15 0 63 $1.517 $1.752 1.155 0.229 30 7 63 $1.517 $1.752 1.155 0.229 45 21 63 $1.517 $1.752 1.155 0.229

Figure 8: Parameters and presentation of the time discounting task
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Appendix A2. Other tasks in the experiment

A2.1. Description of tasks.

The timing was the same in all sessions. We started with the sound of the first bell.

We then proceeded to the time discounting task. At the end of the time discounting task,

we rang the second bell and asked subjects to estimate the time that passed between

the two bells (the one-shot retrospective time estimate task). We the moved to the time

perception task. We ended the experiment with the cognitive ability test and the survey.

Details of the tasks are provided below.

a. Retrospective time estimate task. This task began with the sound of a bell. Sub-

jects were told “the bell you just heard marked the beginning of the experiment. From

now on we would like to have your undistracted attention.” A second bell sound rang later

during the experiment. Subjects were then told to estimate the interval of time between

the two bells and that they would earn $5.00 paid in cash at the end of the experiment if

their estimate was within the real length of the interval ±10%.

b. Cognitive ability test. At the end of the experiment we conducted an incentivized

cognitive ability test. We used a short version of Raven’s IQ test, namely Set I of the

Raven’s Advanced Progressive Matrices (APM) with a five minute time control, as devel-

oped by Raven et al. (1998). This set consists of 12 non-verbal multiple choice questions

that become progressively more difficult. Each test item consists of a pattern with a miss-

ing element. From the eight choices below the pattern, the subject is to identify the piece

that will complete the pattern. Instructions for the test were read directly from the script

provided. Subjects were made familiar with the format of the test and method of thought

required through two practice problems preceding the test. During this time, they were

allowed to ask questions from the experimenters. We incentivized subjects by paying $5

in cash to the top 2 scorers in the test.

c. Demographic survey. We also administered a survey to collect demographic infor-

mation such as gender, GPA and primary language spoken.

A2.2. Results of the retrospective time evaluation task

The retrospective time estimate task is interesting in that it gives a measure of time

perception for intervals longer than a few minutes. However, the data is extremely volatile

as it contains a single observation. In our experiment, the time interval between the two

bells, ν, varied between 23min 35s and 41min 36s depending on the sessions.

There is a fundamental difference between the prospective time production task (the

one studied in the main paper) and the retrospective time evaluation task. In the prospec-

tive task, participants are informed that they have to make a time related judgment and
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they base such judgment on their experienced duration. Prospective timing problems

have been demonstrated to involve attention (Block and Zakay (1997); Brown (2008)).

By contrast, in the retrospective task, participants receive no prior warning that they will

have to make a time related judgment and their report relies on remembered duration, a

piece of information retrieved from memory. Retrospective timing problems are therefore

associated with memory processes and they do not involve attention (Block, 2003).

Research on time perception has mostly focused on prospective timing and in particu-

lar on the properties of the ‘internal clock’ –a central mechanism responsible for estimating

time– as well as the relationship between time perception and attention (Brown (2008);

Grondin (2010)). Even though retrospective and prospective timing are likely to involve

different processes, they should also share some. Indeed, estimating a length of time retro-

spectively or keeping track of a starting time to produce a length is likely to involve similar

abilities to “travel in time.” We investigate this possibility by looking at the relationship

between the results obtained in both tasks.

For each subject i, we computed the percentage difference between the reported interval

between the two bells, ri(ν), and the real interval ν in the corresponding session. This

gives a measure of the perception bias in the retrospective task: PB = ri(ν)−ν
ν . Figure 9

presents a histogram with the perception bias of all subjects.
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Figure 9: Distribution of “perception bias”

We notice from Figure 9 that the majority of subjects underestimate time. The average

PB is -0.22 (st. error = 0.028). Next, we investigate the relationship between prospective

and retrospective time by computing the percentage difference between the reported inter-

val between the two bells, ri(ν), and the interval we predicted the individual would report

based on his estimates (âi, b̂i) in the prospective time production task. This gives a mea-

sure of the excess bias, above and beyond the subjective time estimate: EB = ri(ν)−âi(ν)b̂i

ν .
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Again, reports are typically lower than the predicted estimates. The average EB was -0.11

(st. error = 0.059). It is about one-half of the average PB but also more dispersed. The

results on PB and EB are consistent with the existing literature, which suggests that on

average retrospective time is subjectively perceived as shorter than both prospective time

and real time (Zakay and Block (2004); El Haj et al. (2013)).

Interestingly, the excess bias (EB) is strongly correlated with the parameter bi (PCC

= -0.73, p-value < 0.001). Figure 10 depicts this relationship.
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Figure 10: Correlation between bi and “excess bias”

Subjects with an approximately linear time perception in the prospective task (bi ' 1)

were reasonably well predicted in the retrospective task. By contrast, subjects with a

convex (respectively concave) evaluation of time, that is bi > 1.05 (respectively bi < 0.95),

had a lower (respectively higher) estimate of the time delay between the two bell sounds

compared to what we predicted. These findings suggest that time evaluation in both

tasks are related, indicating that retrospective and prospective time evaluation rely on a

common subset of processes. They also point to systematic differences between the two

and a specific pattern: subjects with a convex time evaluation perceive time as longer than

it truly is and remember past events as passing relatively faster whereas subjects with a

concave time evaluation perceive time as shorter than it truly is and remember past events

as passing relatively slower.46 We also found that PB and EB were positively correlated

(PCC = 0.53, p-value < 0.001). Combined with the previous results, we get that subjects

46The relationship between prospective and retrospective time evaluation is consistent with the findings
in El Haj et al. (2013). The authors found systematic differences for both time evaluations between
Alzheimer’s disease patients and healthy controls, indicating the existence of a correlation between the
processes underlying both. They also administered a mental time travel task and found that the results
obtained in that task were strongly correlated with both retrospective and prospective time evaluation.
This indicates that some processes are involved in both mental time travel and time evaluation.
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with a positive excess bias (whose time perception is concave) have a positive perception

bias while subjects with a negative excess bias (whose time perception is convex) have a

negative perception bias.

We last investigated the relationship between our two measures of time perception and

time discounting. Recall that (i) both PB and EB are predicted to decrease in b and (ii)

subjects with a concave time perception are more patient for time intervals above 1 hour

than subjects with a convex time perception. Said differently, discount factors estimated

after one hour are negatively correlated with b (PCC = −0.24, p-value = 0.021). We should

therefore observe that both PB and EB are positively correlated with estimated discount

factors. We indeed observed a positive relationship between PB and both 1h (T D) and 1d

(T D) (PCC = 0.26, p-value = 0.013 and PCC = 0.25, p-value = 0.014). We also observed

a (weaker but still positive) relationship between EB and both 1h (T D) and 1d (T D)

(Spearman = 0.23, p-value = 0.030 and Spearman = 0.22, p-value = 0.032).47 Overall,

there is a consistent relationship between prospective time perception, retrospective time

perception and time discounting.

A2.3. Results of the IQ test and survey

We found almost no associations between our results and the answers to the ques-

tionnaire. In particular, we did not find any gender effect. At the aggregate level, we

found that GPA scores and performance in the IQ test were positively correlated (PCC

= 0.24, p-value = 0.019). However, none of them had an effect on time perception or time

discounting, and their distributions were similar across clusters.

The absence of a relationship between gender and time discounting departs from what

has been observed in Dittrich and Leipold (2014) in a large online experiment. Differ-

ences in population (online vs. laboratory) and task design may be responsible for the

disparity. Gender differences have also been observed in different time perception tasks

(see Koglbauer (2015) for a review). Elicitation procedures and time delays vary widely

across tasks, and more research would be needed to clarify the role of gender.

We also investigated the effect of language. Chen (2013) suggests that the way we

represent time and we allocate consumption over time might be associated with factors

such as culture or language. We found only a small difference between subjects who

reported to use English (N = 58) and Chinese (N = 26) as their primary spoken language

(8 subjects reported “other” as their primary language). Chinese speakers had higher

time perception estimates than English speakers, driven mostly by a higher bi-parameter:

b̄ = 0.99 vs. b̄ = 0.92, p-value = 0.025.48

47This correlation loses significance when we use Pearson instead of Spearman as the statistical measure.
48Notice that our subjects are either domestic students or international students living in the US, so
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Appendix A3. Other correlations

In this appendix we present the correlation between time perception at 196 seconds

(estimated and actual measurement) and time discounting at 1 hour or 1 day for the “large

sample” of subjects described in the analysis with and without outliers (106 individuals).

It is the same analysis as the one reported in Table 9, except for the enlarged sample size.

Recall that one-half of the subjects in this sample do not have stable rankings at 196s,

that is, their rankings change between 196s and the minimum time of 1 hour after which

subjects can be consistently compared in terms of their time perception. This feature

alone explains the decrease in significance levels.

Large sample (106)
Measure PCC p-value Bayes Corr. prob. of (-)

196s (T P) - 1d (T D) -0.13 0.19 -0.16 0.93
196s (T P) - 1h (T D) -0.13 0.18 -0.16 0.93

196s report - 1d (T D) -0.11 0.26 -0.15 0.91
196s report - 1h (T D) -0.11 0.25 -0.15 0.92

Table 10: Correlation between time perception estimates or time perception reports at
196s and time discounting estimates for the large sample of subjects.

Appendix A4. Cluster analysis

The aggregate analysis shows that differences in time perception are associated with

differences in impatience but it also suggests substantial heterogeneity in behavior. The

objective of this appendix is to investigate in more detail the differences across subjects.

To study heterogeneity, we use the time perception and discount estimates to group

individuals with the objective of finding patterns of behavior. We focus on the 92 subjects

of the main model, and the time interval T = 1 day for both perception and discount-

ing.49 We consider a model-based clustering method to identify the clusters present in

our population. A wide array of heuristic clustering methods are commonly used but they

typically require the number of clusters and the clustering criterion to be set ex-ante rather

than endogenously optimized. Mixture models, on the other hand, treat each cluster as

a component probability distribution. Thus, the choice between numbers of clusters and

cultural differences are likely to be less pronounced than if we compare populations living in different
countries (as in Chen (2013) for example).

49We conducted the same analysis with the other time intervals reported in Table 1 and obtained
consistent results. Only a few subjects shifted from one group to another as we shifted the time interval,
and none of the differences were significant.
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models can be made using Bayesian statistical methods (Fraley and Raftery, 2002). We

implement our model-based clustering analysis with the Mclust package in R (Fraley and

Raftery, 2006). We consider ten different models with a maximum of nine clusters each,

and determine the combination that yields the minimum Bayesian Information Criterion

(BIC).50 For our data, the diagonal model with varying volume and shape that endoge-

nously yields three clusters minimizes the BIC. Table 11 presents the average statistics

of the time perception and time discounting parameters for subjects within each cluster.

Figure 11 provides the same scatterplot as Figure 6, except that subjects are coded by

cluster (the ellipses superimposed on the plot correspond to the within-cluster covariances

and the mean of each cluster is marked with a ∗ sign).

Cluster 1 Cluster 2 Cluster 3

Perception (1 day) 0.85 (0.07) 0.40 (0.06) 5.53 (1.08)
a 1.40 (0.11) 2.17 (0.30) 0.50 (0.16)
b 0.94 (0.01) 0.84 (0.03) 1.23 (0.04)

Discounting (1 day) 1.02 (0.01) 1.29 (0.09) 0.82 (0.14)
β 1.03 (0.01) 1.30 (0.09) 0.83 (0.14)
δ 0.997 (0.00) 0.996 (0.00) 0.997 (0.00)
α 0.95 (0.01) 0.82 (0.06) 0.92 (0.02)

# subjects 68 19 5

Standard errors in parenthesis

Table 11: Summary statistics by cluster for T = 1 day

Cluster 1 is close to what we would expect of rational economic agents. Their subjective

perception of time is almost linear and reasonably close to the true time, with a slight

underestimation on average (which is magnified with the extrapolation). They are also

very patient and time-consistent. Cluster 2 is a group of subjects exhibiting a concave time

perception function. They tend to significantly underestimate time and, as a consequence,

they are more willing to delay consumption than subjects in cluster 1. This is reflected

by an extremely high patience (and a future bias). Cluster 3 is a small group of subjects

exhibiting a strongly convex time perception, extreme overestimation of time and the

lowest discount. They are the only subjects to exhibit a present bias.51

50Hierarchical agglomeration first maximizes the classification likelihood and finds the classification for up
to nine clusters for each model. This classification then initializes the Expectation-Maximization algorithm
which does maximum likelihood estimation for all combinations of models and number of clusters. Finally,
the BIC is calculated for all combinations with the Expectation-Maximization generated parameters.

51Against what one may think upon casual inspection, these subjects do not drive the correlations. In
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Figure 11: Time perception and time discounting by cluster

To investigate the significance of differences across clusters, we ran a series of t-tests.

We found that the 1 day time discounting and the 1 day time perception are all significantly

different across clusters.

fact, correlations are stronger if we remove them from the sample.
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