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Abstract

This paper presents a model where individuals have imperfect information and there is

an opportunity cost of learning. It shows that the endogenous decision to collect costly

information before taking an action has a systematic effect on choices. More precisely,

consider two alternatives with ex ante identical expected payoff but different variances.

The model predicts that, after the learning process is stopped, a majority of individuals will

select the alternative with largest payoff-variance. The result persists when agents have

multiple sources of information. Applications to entrepreneurial investments, composition

of advisory committees, and judicial decision-making are discussed.



1 Motivation

Empirical studies show a high rate of failure in new businesses (for data, see e.g. Camerer

and Lovallo (1999) and the references there-in). Explanations based on hit-and-run strate-

gies or a skewed distribution of profits with positive expected returns can rationalize the

willingness of entrepreneurs to engage in these high-risk, low-probability activities. The

literatures in psychology and behavioral finance argue, on the contrary, that a rational

cost-benefit analysis fails short to explain these choices. These theories claim that an

“irrational” tendency to optimism and overconfidence (loosely defined as an individual

holding an excessively positive belief in his capabilities or chances of success) provides a

more accurate account for this behavioral tendency.1 It is this same irrational belief that

pushes researchers to pursue adventurous innovation strategies.

The present paper discusses a different and possibly complementary force for this ob-

served tendency to engage in high risk enterprises. We consider individuals with imperfect

knowledge about the environment (or about themselves) who choose between alternatives

with ex ante identical expected payoffs but different risks. We argue that if learning is

feasible but sequential and costly, then the endogenous decision to collect information gen-

erates in a population of rational individuals a systematic and testable tendency to favor

the alternatives characterized by highest risk. Stated differently, the paper shows that, in

settings where the collection of information is dynamic and endogenous, a population of

rational individuals display an aggregate form of behavior which may look like driven by

irrational beliefs. Naturally, we do not argue that imperfect knowledge and endogenous

information acquisition provide an explanation for all the choices documented above. In

that respect, the paper just adds one new element to the discussion: risky decisions may be

favored not because of irrational beliefs and cognitive limitations but because of rational

learning and an option value argument.

To illustrate our theory, consider the following stylized example. Two risk-neutral
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entrepreneurs must decide between two investment strategies. The preferences of these

entrepreneurs are identical in most respects. In particular, for any given belief about the

relative chances of success of these investments, not only they both prefer to undertake

the same one, but they also incur the same utility loss if the other investment is selected.

There is, however, one subtle difference: the first investment strategy is more risky for

one entrepreneur whereas the second strategy is more risky for the other. This differ-

ence in risks may reflect, for example, the fact that entrepreneurs start with different

core activities. Pursuing a strategy that builds on existing technology or competence is

intrinsically less risky than giving up the current technology or competence in order to

pursue a radically new strategy. Entrepreneurs initially share the same belief regarding

the relative value of both strategies but they can independently acquire extra evidence

at the expense of postponing the investment decision. Finally, we assume that delay is

costly: the project may become obsolete or less valuable, and the profits postponed are

discounted at a positive rate. Given the same starting belief and the identical behavior and

utility loss of both entrepreneurs for any given belief, one could think that their choices

would be indistinguishable in a stochastic sense. However, this intuition is incorrect: after

the information acquisition process, each entrepreneur will choose his more risky strategy

with higher probability than his less risky one, both when it is ex-post revealed to be the

best alternative and when it is ex-post revealed to be the worst one.

The key for the result lies in the opportunity cost of learning. Suppose that the

preliminary evidence points towards one of the investments. The opportunity cost of

sampling is greatest for the entrepreneur who derives highest payoff if that investment is

chosen and turns out to be successful, that is, for the entrepreneur with highest payoff

variance under this investment. This individual is then more tempted than the other

to stop the information acquisition process, and enjoy the high expected payoff of his

(hopefully correct) decision. Overall, these two entrepreneurs would behave identically if
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the amount of information collected were exogenously fixed. However, the asymmetry in

the total payoff of making the right decision combined with the costly endogenous choice

of learning implies that, in expectation, they will end up choosing different actions and

therefore committing different investment errors. The reader may find obvious that each

entrepreneur favors the investment that has the potential to yield highest payoff. However,

one should realize that by adopting such strategy, entrepreneurs are also committing more

often the mistakes that are most costly.

The result has two immediate consequences for the design of advisory committees.

Suppose that a firm requests the opinion of several employees regarding the optimal in-

vestment strategy and aggregates the information. If, for some reason (related to profit

maximization or not), the firm has a preference for a particular investment, it can increase

the probability that this investment is proposed simply by choosing advisors whose payoff

variance is greatest for that investment. Perhaps more surprisingly, a firm concerned with

maximizing the probability of choosing the correct investment, will optimally select all

advisors of the same type. Thus, the systematic differences in choices (and errors) should

persist even when multiple sources of information are available.

Note that, because all agents are rational in our model, the amount of information

collected is always optimal. Costly learning implies that entrepreneurs decide without

being fully informed, and therefore make wrong choices with positive probability. Thus,

the systematic differences in choices and in the type of mistakes the entrepreneurs make

relates to their different likelihood of choosing (rightly or wrongly) one investment or the

other, and not on whether they sample optimally. Also, the cost of acquiring information

is a delayed (and therefore discounted) payoff and/or a probability of the project becoming

obsolete. In either case, it is proportional to the expected payoff if sampling is stopped

and the action with highest expected payoff undertaken. This is crucial as it implies

that the project with highest payoff variance has also the highest opportunity cost of
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sampling. If, instead, we assumed a fixed sampling cost, all entrepreneurs would choose

the different investments with identical probabilities and the effect highlighted in the paper

would disappear. Last, the paper discusses other applications such as research strategies

of firms, court judgments under civil law, and career choices.

Related literature The paper is related to two strands of the literature. First, to

the individual choice models developed independently by Zabojnik (2004), Van den Steen

(2004), Santos-Pinto and Sobel (2005) and more recently Benôıt and Dubra (2007). These

works concentrate on a single activity that requires ability and show that agents may

perceive themselves as “better” than their objective ranking. The argument in Zabojnik

(2004) is based on an opportunity cost of learning (as in our paper) and an exogenous

utility function convex in ability. Under appropriate initial conditions on the discount

factor, the initial ability and the degree of convexity of the utility, only individuals with

an expected ability below a certain threshold experiment, generating the bias. In Van den

Steen (2004) and Santos-Pinto and Sobel (2005) agents evaluate situations using different

criteria: they are endowed with heterogeneous beliefs and heterogeneous preferences about

which skills are valuable, respectively. Agents can invest in an action or in improving

these skills. The key issue is that agents evaluate the skills of others according to their

own criteria rather than the criteria of others. This, again, generates a bias in self-

assessment. Benôıt and Dubra (2007) demonstrate that a prior distribution of beliefs and

a private signal impose very little statistical restrictions on a summary of the posterior

beliefs held in the population (e.g., whether their belief is above or below the x-percentile).

In particular, the authors find an upper bound on the fraction of individuals who can rate

themselves above x% which is strictly greater than x for all x. Overall, these papers

explain why a majority of individuals may hold above average or even above median

beliefs concerning a certain positive trait. Our setting is different in that our agents

choose between several alternatives. Although we share with these papers the result that
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one option will be systematically favored, our main goal is to explore the behavioral

consequences. In particular, we emphasize the role of the payoff-variance of the different

alternatives in determining the propensity of individuals to take different actions and

therefore commit different types of errors. We also argue the existence of a testable

relationship between delay and type of action undertaken. Finally, we show how this

systematic tendency to favor certain choices can be exploited by third parties.

Second, since we build a model of costly learning with an optimal stopping rule, the

paper can be seen as a particular application of optimal experimentation (see e.g. the

statistical literature on multi-armed bandits summarized in Berry and Fristedt (1985)).

There are two features that make our model different from the main economic applications

studied in this literature. First, unlike in Bolton and Harris (1999) or Keller and Rady

(1999) for example, the agent does not decide at each date on which arm he experiments.

Instead, the decision to keep accumulating evidence produces a signal about the rela-

tive likelihood of each state. Second, most of this literature “highlights the fundamental

trade-off between the conflicting objectives of learning and obtaining high current pay-

offs” (Aghion et al. (1991, p. 623)). More precisely, by experimenting with one arm, the

agent obtains the payoff associated with that alternative. Thus, he may choose a highly

informative arm with low expected payoff in order to learn how to behave in the future.

In our paper, experimenting has a different implicit cost: the discount factor applied to

the action eventually taken. It thus depends on the current belief about which action is

optimal and it is only borne when the experimentation process is stopped.

The plan of the paper is the following. We first present a model in which a decision

maker has imperfect information about the state of nature and chooses between two (risky)

actions. We are particularly interested in the behavior of agents with “seemingly the same”

motivations. Two agents have the same motivations if, for any given belief, they share the

same difference in expected utility between the actions (section 2). We show that their
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different incentives to acquire information affects their behavior in systematically different

ways (section 3). We also determine the effect on third parties when actions generate

externalities (section 4). Last, we provide some concluding remarks (section 5).

2 The model

2.1 States, actions and utilities

We consider the following model. There are I types of agents in the economy (i ∈ I)

and two states of the world A and B denoted by s. Agents choose among a finite set of

irreversible actions γ ∈ Γ. The ex-post utility of a type-i agent is a function ui(γ, s) of

the action and the true state. For each state, there is one action that provides the highest

utility. Naturally, this action is selected if the state is known. However, agents initially

have imperfect knowledge about the state. More precisely, they share a common prior p

that the true state is A. The expected payoff of taking action γ is:

ui(γ) = p ui(γ, A) + (1− p) ui(γ, B)

For expositional purposes, we will study a simpler version with only two actions Γ =

{a, b}. As we will develop in the discussion of our results, this restriction is made with

little loss of generality. Action a is optimal if the state is A and action b is optimal if

the state is B. Last and foremost, the variance in payoffs is different across actions. To

capture this property, we assume that the utility representation for a type-i agent is:

ui(a, ·) =

{
xi if s = A

−xi if s = B
and ui(b, ·) =

{
−yi if s = A

yi if s = B
, (1)

with xi > 0 and yi > 0. This representation allows us to restrict the attention to the most

interesting cases where it is possible to compare the variances of the actions and to have

clear-cut results. Indeed, it is easy to see that when xi > yi, then action a has the highest

variance in payoffs.
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2.2 Information

Before making a decision, each agent can learn about the likelihood of the states. We

denote by τi,t the decision of agent i at a given date t ∈ {0, 1, ..., T − 1}, where T is

finite but arbitrarily large. At each date, his options are either to take the optimal action

conditional on his current information (τi,t = γ ∈ {a, b}) or wait until the following period

(τi,t = w). If the agent undertakes an (irreversible) action, then payoffs are realized and

the game ends. Waiting has costs and benefits. On the one hand, the delay implied by

the decision to wait one more period before acting is costly. We denote by δ (< 1) the

discount factor. Alternatively, 1− δ can be interpreted as the probability that all options

vanish, in which case the agent obtains no payoff. On the other hand, the agent obtains

between dates t and t+1 one signal σ ∈ {α, β} imperfectly correlated with the true state.

Information improves the quality of the decision made by the agent. As long as the agent

waits, he keeps the option of undertaking action a or b in a future period, except at date T

where waiting is not possible anymore, so the agent’s options are reduced to τi,T ∈ {a, b}.2

The relation between signal and state is the following:

Pr[ α | A ] = Pr[ β | B ] = θ and Pr[ α | B ] = Pr[ β | A ] = 1− θ,

where θ ∈ (1/2, 1) captures the accuracy of information: as θ increases, the informational

content of a signal σ increases (when θ → 1/2 signals are uninformative, and when θ → 1

one signal perfectly informs the agent about the true state).3

Suppose that a number nα of signals α and a number nβ of signals β are revealed during

the nα + nβ periods in which the agent waits. Using standard statistical techniques, it is

possible to compute the agent’s posterior belief about the state:

Pr(A | nα, nβ) =
Pr(nα, nβ | A) Pr(A)

Pr(nα, nβ | A) Pr(A) + Pr(nα, nβ | B) Pr(B)

=
θnα−nβ · p

θnα−nβ · p + (1− θ)nα−nβ · (1− p)
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It is interesting to notice that the posterior depends exclusively on the difference between

the number of signals α and the number of signals β. So, roughly speaking, two different

signals “cancel each other out” for the purpose of computing the expected belief. The

relevant variable which will be used from now on is n ≡ nα − nβ ∈ Z. We define the

posterior probability µ(n) ≡ Pr(A | na, nb). Rearranging terms, we have:4

µ(n) =
1

1 +
(

1−θ
θ

)n 1−p
p

Last, when solving the model, we will treat n as a real number (instead of an integer

as we should in order to be rigorous). This mathematical abuse is made for technical

convenience.

2.3 Types

Different types of agents have different preferences, which translate into different cardinal

representations of their utility. From a general perspective, there are two cases. In some

situations, agents with the same belief simply disagree on the optimal action. They will

end up making different choices both when they learn and when they choose between

actions. In some other situations, agents with the same belief agree on the action to

take. One objective of this paper is to show that they still might end up making different

learning decisions and taking different actions subsequently.

To focus on these second type of situations (see the next section for some examples), we

assume that for any given belief, all types of agents have the same difference in expected

utility between every pair of actions. This means not only that they have the same

preferred action when confronted to the same evidence, but also that they have the same

willingness to pay to make the decision. We will say that these different types of agents

“for Identical Beliefs are Identical in Behavior and Utility Difference”

(ibibud). The property is summarized as follows.
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Definition Agents are ibibud if and only if:

ui(γ)− ui(γ′) = ui′(γ)− ui′(γ′) ∀ i, i′ ∈ I, γ, γ′ ∈ Γ, p

which, in particular, implies that arg max
γ

ui(γ) ≡ arg max
γ

ui′(γ) for all i, i′ ∈ I, p.

Given our simplified two-action model, it is sufficient to restrict to two types of agents:

action a has the highest variance in payoffs for type-1 agents and action b has the highest

variance in payoffs for type-2 agents. Let x1 = h and y1 = l with h > l, then, it is sufficient

to restrict to the case where x2 = l and y2 = h. The ibibud property translates into:

ui(a)− ui(b) = (h + l)(2p− 1) ∀ i ⇒ γi = a if p > 1/2 and γi = b if p < 1/2 ∀ i.

Figure 1 provides a graphical representation of these utilities.5

-

6

?

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z

Z
Z

Z
Z

Z
Z

ZZ

Z
Z

Z
Z

Z
Z

ZZ

Z
Z

Z
Z

Z
Z

ZZ

Z
Z

Z
Z

Z
Z

ZZ

Z
Z

Z
Z

Z
Z

ZZ

Z
Z

Z
Z

Z
Z

ZZ

���������������

��������

��������

��������

��������

��������

��������

h

l

−h

−l

0
1 p

u2(b)
u2(a)

Expected utility of type-2 agent.

-6

?

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

XXXXXXXXXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

h

l

−h

−l

0
1 p

u1(b)
u1(a)

Expected utility of type-1 agent.

Figure 1. Utility representations for type-1 and type-2 agents.

2.4 Examples

In our theory, an individual must eventually take an irreversible decision that is ex post

optimal only in one (ex ante unknown) state of the world. Information can be obtained

before making a choice at a cost. We briefly review a series of situations in which those

ingredients are present.
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Entrepreneurial investments under uncertainty Our leading example is about

choice between different risky investments. A firm must decide which investment strategy

to follow, a or b: the development of a product based on current know-how or one that

radically departs from it; an R&D strategy that builds on existing technology or one that

requires the development of a new technology; an investment that consolidates the exist-

ing costumer base or one that expands to a different population; a product that exploits

complementarities with the existing portfolio or one that opens a new niche for the firm.

The ex ante unknown state of the economy, market conditions, and consumer preferences,

A or B, determine which investment will be relatively more successful. Finally, a choice

that involves diversification is intrinsically more risky for a firm than one that builds on

core competence (existing vs. new knowledge, technology, customers or product). Because

firms in the same market have different backgrounds, what is considered high risk for

one firm may be low risk for another and vice versa; the difference across types (1 or 2)

captures this heterogeneity.

Court judgements under civil law A judge must choose whether to release (action

a) or convict (action b) an offender who is innocent (state A) with probability p and

guilty (state B) with probability 1 − p. The judge can acquire information about the

culpability of the accused at the cost of delaying the sentence. Letting the prisoner free is

the riskiest choice for a type-1 judge (payoff u1(a, ·) ∈ {−h, h}) whereas convicting him is

the riskiest choice for a type-2 judge (payoff u2(b, ·) ∈ {−h, h}). However, for any belief p,

the differential in utility between convicting and releasing the offender is the same for both

judges (ibibud property). An alternative interpretation is that there is only one judge

and i represents the type of offense (robbery, murder, etc.). For these different offenses,

conviction and acquittal involve different objective risks.
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Career choices under imperfect self knowledge An adolescent chooses whether

to pursue a career in sports (a) or to continue his intellectual education (b). Success in

sports depends largely on “talent” (physical strength, coordination, performance under

pressure). States A and B denote respectively a person with high talent and low talent for

sport relative to his talent for intellectual activities. Training and repeated exposure to

the activity provides information at a cost. Indeed, each year of non-exclusive attention

decreases the long-run expected return in either domain. Last, earnings have a higher

variance in sports (h or −h) than in intellectual endeavors (l or −l). Thus, there is only

one relevant type in this application.

This example can be relabeled as an individual who decides whether to become an

entrepreneur and open his own business (the high risk activity) or accept a job as an

employee in a firm (low risk activity). Entrepreneurial talent is most valuable in new

business ventures whereas discipline and team spirit is most important when working in

a firm.

3 Information acquisition and optimal decision-making

A first goal of our study is to determine how a type-i agent acquires information before

making a decision (section 3.1). Another objective is to compare the behavior of indi-

viduals with apparently similar motivations, that is, individuals who satisfy the ibibud

property (section 3.2). We want to determine whether they exhibit different patterns

of information acquisition and, if so, why. We also want to analyze how these different

sampling strategies affect posterior beliefs (which measure the ex post confidence in the

state) and actions. Then, we want to find out which type of mistakes are eventually made:

how often action a is undertaken under state B, and action b under state A. The next

objective is to determine whether the preferences of agents can be inferred from choices,

the only observable variable (section 3.3). We also study what happens when we consider
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a different cost of information acquisition (section 3.4). Finally, we discuss the importance

of the main ingredients of the model (section 3.5).

3.1 Option value of waiting and optimal stopping rule

Given the information revelation structure presented in section 2.2, agents face a trade-off

between delay and information. This trade-off has been analyzed in a related setting in

the literature on investment under uncertainty (see e.g. Dixit and Pindyck (1994) for a

summary). In these models however, time is continuous and there is only one risky action

to take. Our model can thus be seen as an extension of this literature to the case where

two risky options are available. In this new setting and conditional on making a choice

now, the opportunity cost of taking one action is not fixed anymore. This, in turn, also

affects the option value of waiting.

In order to find the optimal stopping rule, we first determine the value function V t
i

that a type-i agent maximizes at date t. It can be written as:

V t
i (n)=


max

{
xi(2µ(n)−1), δ

[
ν(n)V t+1

i (n + 1) + (1−ν(n))V t+1
i (n−1)

]}
if µ(n)> 1

2

max
{

yi(1−2µ(n)), δ
[
ν(n)V t+1

i (n + 1) + (1−ν(n))V t+1
i (n−1)

]}
if µ(n)< 1

2

(2)

where ν(n) = µ(n)θ+(1−µ(n))(1−θ). In words, at date t and given a difference of signals

n that implies a posterior µ(n) > 1/2, type-i agent chooses between taking action a with

expected payoff xiµ − xi(1 − µ) or waiting. In the latter case, signal α (respectively β)

is received with probability ν (respectively 1− ν) and the value function in the following

period t + 1 becomes V t+1
i (n + 1) (respectively V t+1

i (n − 1)), discounted at the rate δ.

For µ(n) < 1/2, the argument is the same, except that the optimal action if the agent

does not wait is b with payoff −yiµ + yi(1− µ). Given (2), we can determine the optimal

strategy for each type. This technical result is key for the subsequent analysis.

Lemma 1 For all δ < 1, there exist (n∗i,t, n
∗∗
i,t) at each date t s.t.:

τi,t = b if n 6 n∗i,t, τi,t = a if n > n∗∗i,t and τi,t = w if n ∈ (n∗i,t, n
∗∗
i,t).
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Besides, we have µ(n∗i,t) < 1/2 < µ(n∗∗i,t).

Proof. See Appendix A1. 2

The idea is simple. Agents trade-off the costs of delaying their choice between actions

a and b with the benefits of acquiring more accurate information. When µ(n) > 1/2,

waiting becomes more costly as n increases, because delaying the action one extra period

reduces the expected payoff by an amount proportional to 2µ(n) − 1. Conversely, when

µ(n) < 1/2, waiting becomes more costly as n decreases, because delaying the action

reduces the expected payoff by an amount proportional to 1 − 2µ(n). In other words,

at each date t, there are two cutoffs µ(n∗∗i,t) > 1/2 and µ(n∗i,t) < 1/2 for a type-i agent.

When µ > µ(n∗∗i,t), the individual is “reasonably confident” that the true state is A, and

when µ 6 µ(n∗i,t), he is “reasonably confident” that the true state is B. In either case, the

marginal gain of improving the information about the true state is offset by the marginal

cost of a reduction in the expected payoff due to the delay it implies. As a result, he

strictly prefers to stop learning and take his optimal action. For intermediate beliefs, that

is when µ(n) ∈ (µ(n∗i,t), µ(n∗∗i,t)), a type-i agent prefers to keep accumulating evidence.

3.2 Different decisions by agents with the same motivations

In this section, we want to compare the behavior of ibibud agents. We consider the two

types we already introduced, that is, (x1 = h, y1 = l) and (x2 = l, y2 = h), with h > l.

Action a has the highest variance in payoffs for type-1 agents, whereas action b has the

highest variance in payoffs for type-2 agents. Our next result is the following.

Proposition 1 For all δ < 1 and for all t, type-1 agents require less evidence in favor of

A to take action a and more evidence in favor of B to take action b than type-2 agents.

Formally, µ(n∗1,t) < µ(n∗2,t) < 1/2 < µ(n∗∗1,t) < µ(n∗∗2,t).

Proof. See Appendix A1. 2
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First of all, note that by the symmetry of types 1 and 2, µ(n∗∗1,t) = 1 − µ(n∗2,t) and

µ(n∗1,t) = 1− µ(n∗∗2,t). It immediately implies that:

µ(n∗∗1,t)− 1/2 < 1/2− µ(n∗1,t) and µ(n∗∗2,t)− 1/2 > 1/2− µ(n∗2,t).

These inequalities state that the confidence of a type-1 agent on the true state being A

when he chooses to take action a is smaller than his confidence on the true state being B

when he chooses to take action b. By symmetry, the opposite is true for a type-2 agent.

Comparing the two agents, it means that a type-1 agent will need fewer evidence in favor

of A in order to decide to stop collecting news and take action a and more evidence in

favor of B in order to stop collecting news and take action b than a type-2 agent. The

intuition for this result is simply that, given the delay associated with the accumulation

of evidence, the marginal cost of learning is proportional to the agent’s expected payoff

of taking an action. Formally, for a type-1 individual, it is proportional to h(1− δ) when

µ > 1/2 (action a) and to l(1− δ) when µ < 1/2 (action b). As a result and other things

being equal, it is relatively less interesting to keep experimenting when the action currently

optimal is a rather than b. The argument for a type-2 agent is symmetric. The shape of

these cutoffs is graphically represented in Figure 2.
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Stopping rule for a type-1 agent.

Figure 2. Stopping rules for type-1 and type-2 agents.
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When T → +∞, then n∗i,t → n∗i and n∗∗i,t → n∗∗i for all t. Denote by Pr(τi = γi | s) the

probability that a type-i individual eventually undertakes action γi (∈ {a, b}) when the

true state is s (∈ {A,B}). Also, let µ∗∗i ≡ µ(n∗∗i ) and µ∗i ≡ µ(n∗i ). Then, the posterior

beliefs at the stopping rules are µ∗1 and µ∗∗1 for type-1 agents and µ∗2 and µ∗∗2 for type-2

agents. Given agents are symmetric, we have µ∗∗2 = 1− µ∗1 and µ∗2 = 1− µ∗∗1 . To simplify

notations, let µ∗∗ ≡ µ∗∗1 and µ∗ ≡ µ∗1 (then µ∗∗2 = 1 − µ∗ and µ∗2 = 1 − µ∗∗). Suppose

that type-1 and type-2 agents start with the same prior belief p ∈ (1 − µ∗∗, µ∗∗). Each

agent chooses the amount of information he collects before undertaking an action and the

signals obtained by the agents are independent. Their optimal stopping rule is given by

Lemma 1. We can compare the relative probabilities that each agent undertakes action a

and action b.

Proposition 2 For all p ∈ (1 − µ∗∗, µ∗∗), δ < 1, h > l > 0 and when T → ∞ , type-

1 agents take action a wrongly more often than type-2 agents. Similarly, type-1 agents

take action b wrongly less often than type-2 agents. Moreover, as the difference in payoffs

between actions increases, the difference in behavior between types 1 and 2 increases.

Proof. The first part of Proposition 2 is a direct consequence of µ(n∗∗2 ) > µ(n∗∗1 ) and

µ(n∗2) > µ(n∗1). These inequalities imply that Pr(τ1 = a | B) > Pr(τ2 = a | B) and

Pr(τ1 = b | A) < Pr(τ2 = b | A); The second part results from the fact that, also by Lemma

1, ∂n∗1
∂h < 0, ∂n∗∗1

∂h < 0, ∂n∗1
∂l > 0, ∂n∗∗1

∂l > 0 and by symmetry ∂n∗2
∂h > 0, ∂n∗∗2

∂h > 0, ∂n∗2
∂l < 0,

∂n∗∗2
∂l < 0. Then ∂ Pr(τ1=a | s)

∂h > 0 > ∂ Pr(τ2=a | s)
∂h and ∂ Pr(τ1=a | s)

∂l < 0 < ∂ Pr(γ2=a | s)
∂l for all

s. These comparative statics fulfill the purpose of our analysis. However, for the reader

interested, the analytical expressions of the probabilities Pr(τi | s) are derived in Brocas

and Carrillo (2007, Lemma 1) for an initial prior p and exogenous stopping posteriors µ∗

and µ∗∗.6 These are given by: Pr(τ1 = a | A) = p−µ∗

µ∗∗−µ∗
µ∗∗

p , Pr(τ1 = a | B) = p−µ∗

µ∗∗−µ∗
1−µ∗∗

1−p ,

Pr(τ2 = a | A) = p−(1−µ∗∗)
µ∗∗−µ∗

1−µ∗

p , Pr(τ2 = a | B) = p−(1−µ∗∗)
µ∗∗−µ∗

µ∗

1−p . 2
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Proposition 2 shows that, even if type-1 and type-2 agents are ibibud –and therefore

have intrinsically the same motivations– they will make systematically different choices,

at least in a stochastic sense. As shown in Lemma 1, a type-1 agent is relatively more

likely to stop collecting news when the preliminary evidence points towards the optimality

of action a than when it points towards the optimality of action b (i.e., when the first few

signals are mainly α rather than β). Stated differently, the evidence in favor of A needed

to induce a type-1 agent to take action a is smaller than the evidence in favor of B needed

to induce him to take action b. The opposite is true for a type-2 agent. As a result, in

equilibrium, a type-1 agent is more likely to take action a by mistake (i.e., when the true

state is B) and less likely to take action b by mistake (i.e., when the true state is A) than

a type-2 agent. Note that the endogenous choice to acquire information is crucial for this

result: by definition of ibibud, the two types of agents would take action a with the same

expected probability if the number of signals they receive were externally or exogenously

imposed. Also, as the difference in the variance of payoffs (h− l) increases, the likelihood

that the two agents behave differently also increases: type-1 takes more often action a by

mistake and less often action b by mistake whereas the opposite is true for type-2. Last,

the fact that type-1 agents are less likely to take action b when the state is A automatically

implies that they are more likely to take action a when the state is A. Thus, Proposition

2 can be best stated as “type-1 agents are more likely to take action a and less likely to

take action b, both rightly and wrongly, than type-2 agents.”

We now provide a simple numerical example to give an idea of the propensity of agents

to make different types of mistakes. Consider the extreme situation in which h > 0 and

l → 0.7 From the proof of Proposition 2, the probability that a type-i agent makes the

wrong decision is:

Pr(τ1 = a | B) =
p

1− p
× 1− µ∗∗

µ∗∗
and Pr(τ1 = b | A) → 0

Pr(τ2 = a | B) → 0 and Pr(τ2 = b | A) =
1− p

p
× 1− µ∗∗

µ∗∗
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A type-1 agent will never take action b mistakenly, and a type-2 agent will never take

action a mistakenly. Simple comparative statics about the likelihood of taking the wrong

action given a prior probability p and a stopping posterior µ∗∗ are illustrated in Figure 3.

-

p14/52/31/5 1/3 1/2

6

1

1/2

µ∗∗ = 2/3 µ∗∗ = 4/5µ∗∗ = 2/3µ∗∗ = 4/5

Pr(τ1 = a | B)
Pr(τ2 = b | A)

Figure 3. Frequency of mistakes by type-1 and type-2 agents.

Last, note that µ∗∗ is increasing in δ, and lim
δ→1

µ∗∗ = 1. As individuals become more

patient, they acquire more information and make fewer mistakes. If they are infinitely

patient, the cost of waiting vanishes. It then becomes optimal for both types to be (almost)

perfectly informed before choosing any action, and there are (almost) no mistakes in

equilibrium.

3.3 Revealed preferences

Suppose only choices are observable. Do choices convey any information about the pref-

erences of agents? In principle, agents might end up making decisions for many different

reasons and it might be difficult to identify a clear relationship between preferences and

choices. Agents who often take action a might simply prefer that action. But, as our

theory suggests, a tendency to favor a certain action can also arise in the absence of such

strict preference. Overall, behavior is not a good indicator of preferences and a systematic
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tendency to behave in a certain way does not necessarily result from a bias in perceptions

or preferences.

Our analysis suggests however that observed choices can be sometimes informative

about the preferences of decision-makers. To be more precise, suppose that the individual

starts with a prior belief p = 1/2 and his preferences are known up to the true type. We

have the following result.

Proposition 3 Agents’ types can be partly inferred from (i) the decisions they reach; (ii)

the delay in making decisions; and (iii) the frequency of their mistakes.

First, we have shown in the previous section that the alternative that can potentially

yield highest payoff (that is, the one with highest payoff-variance) will be adopted more

often. In that case, it is possible to infer the preferences by observing the decisions of

agents. Type-1 agents will take action a more often than type-2 agents. Conversely,

type-2 agents will take action b more often than type-1 agents.

Second, given the optimal learning strategy and compared to type-2 agents, type-1

agents will reach more quickly the stopping rule commanding to take action a than the

stopping rule commanding to take action b. In other words, the alternative that can

potentially yield highest payoff will be adopted not only more often but also more rapidly.

This positive relation between delay and type of decision can, in principle, be tested

empirically.

Finally, if the state is observable ex post, it is possible to determine whether a mistake

was made or not. The frequency of the mistakes can then be used to infer the type of

the agent. In our case, a type-1 agent is more often wrong than a type-2 agent when he

takes action a and less often wrong when he takes action b. Again, this prediction can be

empirically tested.
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3.4 Robustness

A crucial ingredient for the results presented so far is our specific way of modelling the cost

of information acquisition. Because, delayed payoffs are discounted at a positive rate, the

opportunity cost of waiting is greater the bigger the expected payoff of choosing an action.

So, for example, starting from p = 1/2 it is more costly to wait after one signal in favor of

the high-variance alternative than after one signal in favor of the low variance alternative.

Formally, the opportunity cost of stopping the sampling process is (1− δ) h(2µ(1)− 1) in

the former case and (1 − δ) l(1 − 2µ(−1)) ≡ (1 − δ) l(2µ(1) − 1) in the latter. Naturally,

identical results would be obtained if, instead of a discount factor, we assumed that the

possibility of acting vanishes between two dates with probability p = 1− δ.

By contrast, the results would not hold if the only cost of sampling was a fixed per

unit fee (and no delay). Formally, the value function of a type-i agent at date t, Ṽ t
i , would

be:

Ṽ t
i (n)=


max

{
xi(2µ(n)−1), ν(n)Ṽ t+1

i (n + 1) + (1−ν(n))Ṽ t+1
i (n−1)−c

}
if µ(n)> 1

2

max
{

yi(1−2µ(n)), ν(n)Ṽ t+1
i (n + 1) + (1−ν(n))Ṽ t+1

i (n−1)−c
}

if µ(n)< 1
2

(3)

with c (> 0) denoting the cost per unit of sampling. Indeed, in Appendix A2 we show

that under this alternative specification, the willingness to experiment is identical in the

low and high variance alternatives, so it is also identical for a type-1 and a type-2 agent.

The reason is simple. Sampling has a benefit and a cost. The benefit is the possibility of

finding enough information in support of the currently unfavored alternative that would

lead to a switch of action weighted by the incremental expected gain of implementing this

action reversal. Because of the ibibud property, this incremental gain is identical for both

types of agents. The cost is simply the amount to pay for extra information. With a fixed

per unit fee c, this cost is also identical for both types of agents. If the cost and the benefit

are the same, the optimal stopping rule is also the same.8

Since a fixed cost affects the total amount of sampling but not the relative propensity
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to experiment on each alternative, all our results survive when we combine the fixed cost

described in this section with the opportunity cost developed in the main body of the paper.

For most applications, the cost of experimentation is likely to be a combination of delay,

probability of not being able to act in the future and per unit fee. The relative importance

of each of them will depend on the specific case. For example, in the investment application

acquiring information has two major costs: the project may become obsolete or may be

undertaken by a rival entrepreneur, and the profits are delayed and therefore discounted.

By contrast, for judicial decision-making the most important cost is the time, effort and

money spent in the collection of each piece of evidence. Finally, the cost of delaying the

choice between an intellectual and a sport career is a decrease in the probability of success

in either domain.

3.5 Discussion

To conclude this section, we briefly discuss the importance of some other ingredients of

the model and some possible interpretations of the results.

It should be clear by now that agents in our model are not fooled, deceived or misled.

Contrary to the behavioral literature on optimism or overconfidence (see the references in

the introduction), our agents have no cognitive limitations that would lead to systematic

biases in their beliefs. Instead, they are rational; they accumulate and interpret signals in

a bayesian way, and choose optimally given their information. Differences in choices be-

tween the different types of agents (and therefore in outcomes and in the type of mistakes

incurred) are solely due to differences in their marginal incentives to learn about the state

of the economy. In other words, in our paper the tendency to favor risky alternatives in

entrepreneurial endeavors after a small amount of evidence is a profit-maximizing strat-

egy: the high risk and low chances of success are recognized, but the opportunity cost

of accumulating more evidence is too important. Technically, the point is very simple.

The endogenous decision to acquire information does not affect the first-order moment
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of beliefs. That is, the average belief in the population always coincides with the true

average. However, it may influence the higher-order moments. In particular, it can affect

the skewness in the distribution of beliefs. Given a limited set of actions, two populations

whose distribution of beliefs have the same average but different skewness will exhibit

different aggregate behaviors.9

The model relies on irreversibility of actions or no learning after the decision is made.

Irreversibility is quite natural in the judicial example, but either assumption can be too

extreme in investment choices for example. Nevertheless, one should realize that partial

irreversibility is enough to generate a short-run tendency to favor the riskiest alternative.

Moreover, if the environment changes stochastically, information becomes obsolete over

time, preventing the agent from learning the state with certainty. In that case, the willing-

ness to favor risky choices will persist also in the long run, even under partial reversibility.

Geometrically, the utility of a type-2 agent is just a rotation of the utility of a type-1

agent (see Figure 1). It is then easy to see that the effect of payoff-variance in the delay

and likelihood of taking certain alternatives will hold if, keeping ibibud, we increase the

action space. From a theoretical viewpoint, it would be interesting to study a more general

version of this two armed bandit problem, as it could provide novel insights about the

relationship between the value of information and the “curvature” of the utility function.

4 Micro motives and macro consequences

We have argued in the previous sections that agents with the same motivations can end

up making different choices, resulting in different types of mistakes. In many contexts,

the decision might affect other agents in the economy, and those agents might be more or

less sensitive to a given type of mistake. In the next subsections, we assess the mistakes

from the perspective of third parties when externalities are present.
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4.1 Preferences over ibibud agents

Note that, in our model, agents select a stopping rule that increases the probability of

taking the action with highest payoff. The other side of the coin is that, with this strategy,

agents are also increasing the probability of making the mistakes that are most costly.

Because the types of mistakes incurred are systematically different, the parties involved

will invariably have preferences over which type of agent they prefer to face.

To analyze this point in more detail, let us consider a third party with preferences

summarized by the utility function v(γ, s). Also, let Pr(A) ≡ p ∈ (µ∗i , µ
∗∗
i ) and assume

that the third party does not pay the cost of learning (δ = 1). Given the stopping rule

used by a type-i agent, the expected utility of the third party is:

v̂(µ∗i , µ
∗∗
i ) = p

[
Pr(τ1 = a | A) v(a,A) + Pr(τ1 = b | A) v(b, A)

]
+(1− p)

[
Pr(τ1 = a | B) v(a,B) + Pr(τ1 = b | B) v(b, B)

]
which simplifies as:

v̂(µ∗i , µ
∗∗
i ) =

p− µ∗i
µ∗∗i − µ∗i

[
µ∗∗i v(a,A)+(1−µ∗∗i )v(a,B)

]
+

µ∗∗i − p

µ∗∗i − µ∗i

[
µ∗i v(b, A)+(1−µ∗i )v(b, B)

]
A simple inspection of this function yields the following result.

Proposition 4 Different types of agents have different effects on the welfare of third par-

ties. In particular, (i) an ibibud third party with preferences of the form v(·, ·) = u1(·, ·)

or v(·, ·) = u2(·, ·) strictly prefers type-1 agents when p < 1/2 and type-2 agents when

p > 1/2; and (ii) third parties with a strict preference for an action can appoint a priori

unbiased agents to manipulate collective decision-making.

Proof. We have ∂v
∂µ∗i

∝ µ∗∗i

[
v(b, A) − v(a,A)

]
+ (1 − µ∗∗i )

[
v(b, B) − v(a,B)

]
. Similarly,

∂v
∂µ∗∗i

∝ µ∗i

[
v(b, A) − v(a,A)

]
+ (1 − µ∗i )

[
v(b, B) − v(a,B)

]
. Then, if v(b, A) < v(a,A)

and v(b, B) < v(a,B), both derivatives are negative. Now let v(a,A) = x, v(a,B) = −x,
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v(b, A) = −y and v(b, B) = y, then ∂v
∂µ∗i

∝ (x + y)(1 − 2µ∗∗i ) < 0 and ∂v
∂µ∗∗i

∝ (x + y)(1 −

2µ∗i ) > 0. Also,

v̂(µ∗1, µ
∗∗
1 ) ≡ V̂ 1 = x(2µ∗∗ − 1)

p− µ∗

µ∗∗ − µ∗
+ y(1− 2µ∗)

µ∗∗ − p

µ∗∗ − µ∗

v̂(µ∗2, µ
∗∗
2 ) ≡ V̂ 2 = x(1− 2µ∗)

p− 1 + µ∗∗

µ∗∗ − µ∗
+ y(2µ∗∗ − 1)

1− µ∗ − p

µ∗∗ − µ∗

and V̂ 1 − V̂ 2 ∝ (1− 2p)[1− µ∗∗ − µ∗]. For all p ∈ (1− µ∗∗, µ∗∗), we have 1− µ∗∗ − µ∗ > 0

and therefore V̂ 1 − V̂ 2 ≷ 0 if p ≶ 1/2. 2

The result is intuitive. Given that ibibud agents end up making different choices and

therefore commit different types of mistakes, they affect third parties differently. Because

they do not have to pay the cost of learning, all third parties who care about taking the

correct action (a under A and b under B) want to learn the true state and therefore prefer

an agent who acquires as much information as possible. If third parties are also affected by

the delay, an interior stopping rule becomes optimal also from their perspective. However,

even the extreme case where maximum information is optimal has an interesting property:

all third parties who care about taking the correct action and would take the same decision

as both types of agents for a given prior, have strict preferences over types. If the initial

belief suggests to take action a (p > 1/2), they all want to delegate the decision to a

type-2 agent. The reason is simply that they anticipate that a type-1 agent will stop

with little evidence towards state A and therefore take action a “too often.” The best

chance to discover action a is incorrect is to appoint a type-2 agent who will continue

learning until there is substantial evidence in favor of A. The same argument applies

when the initial belief suggests b is optimal. The implications for the investment example

described in section 2.4 are simple but interesting. For instance, consider a manager whose

preferences are represented by the utility function uk(γ, s) with k ∈ {1, 2}. Suppose that

he must delegate both the information acquisition and the investment decision to one of his

employees whose preferences are represented by ui(γ, s). If the manager must compensate
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the employee for the sampling process, then it is trivially optimal to select an individual

with identical interests, i = k. This conclusion does not necessarily hold when the manager

does not compensate the employee for the information cost nor suffers if there is a delay. In

that case, the manager tries to maximize the information obtained before acting. This is

achieved by selecting an employee who is reluctant to stop in the state favored by the prior.

Summing up, a type-1 manager who initially believes that state A is more likely than B

finds it optimal to appoint an employee who stops with little evidence towards A (that is,

a type-1 agent) if the manager pays for the sampling cost. However, if the manager does

not pay for it, then he prefers to appoint an individual who samples relatively more given

the prior belief and therefore takes more often the optimal action (that is, a type-2 agent).

The second part of the proposition states that decisions can be manipulated if third

parties can choose the agents’ type. It is a direct consequence of Propositions 1 and 2.

If a third party wants action a to be taken independently of the state, it will optimally

delegate the decision to an agent who is most likely to take action a, that is, a type-1

agent. The implications are, again, immediate. A manager with a vested interest in one

particular action can impose his preferences with relatively high probability and, at the

same time, not be considered partisan: he simply needs to delegate the decision to an

employee whose payoff variance is very high under the action preferred by the manager

and very low under the other action.

4.2 Committees

Another natural question is whether aggregating the information that ibibud individuals

can collect would alleviate mistakes. For instance, suppose that a welfare maximizing

principal can ask several type-1 and type-2 agents their opinion about which action a

or b should be taken. For simplicity, assume that agents care only about providing the

correct appraisal (whether their suggestion is followed by the principal or not) and that

their utility is captured with the functions ui(γ, s) described in section 2. This behavior is
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rational if, for example, appraisal and state are ex-post revealed and agents have career-

concerns: their payoff is then a function of the quality of their suggestion, and not a

function of the final action undertaken. In this setting, each agent’s optimal rule for the

acquisition of information coincides with the rule described in Lemma 1, so increasing the

number of agents can only decrease the probability of an incorrect decision.10 We assume

that the number of agents is fixed but the principal can choose the proportion of type-1

and type-2 agents. Given that the two types of agents commit systematically different

errors, we want to determine whether it is optimal to select all agents of the same type or

to have appraisals from agents of both types. In other words, we are interested in studying

the optimal composition of an advisory committee, and we ask the following question: is

it better to be surrounded by individuals who tend to favor the same or opposite actions?

To address this issue, we consider the simplest version of our model. We denote by

γj
i the recommendation made by the jth type-i agent. We suppose that l → 0, so that

Pr(γj
1 = b | A) = 0 and Pr(γj

2 = a | B) = 0 for all j. The total number of agents is

fixed and equal to n. The principal chooses x, the number of type-1 agents, n − x being

the number of type-2 agents. Last, in order to avoid any exogenous reason to prefer one

type of agent over another, we assume that the principal’s sole concern is to minimize

the probability of a mistake, i.e., v(a,A) = v(b, B) > v(a,B) = v(b, A). If we denote by

γP ∈ {a, b} the action taken eventually by the principal, we have the following result.

Proposition 5 If p < 1/2, then x = n. The principal chooses γP = a if γj
1 = a ∀j and

γP = b otherwise. Also, Pr(γP = b | A) = 0 and Pr(γP = a | B) =
(

p
1−p ×

1−µ∗∗

µ∗∗

)n
.

If p > 1/2, then x = 0. The principal chooses γP = b if γj
2 = b ∀j and γP = a

otherwise. Also, Pr(γP = b | A) =
(

1−p
p × 1−µ∗∗

µ∗∗

)n
and Pr(γP = a | B) = 0.

Proof. Fix x. Given l → 0, we have Pr(γ1 = b | A) = 0 and Pr(γ2 = a | B) = 0, so the

only possible error arises when all type-1 agents announce γj
1 = a (j ∈ {1, ..., x}) and all
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type-2 agents announce γk
2 = b (k ∈ {1, ..., n− x}). The remaining question is whether, if

this happens, the principal will take action a or action b.

Suppose that the principal minimizes costs with γP = a. The expected loss is then:

LA(x) = Pr(B) ·
∏x

j=1 Pr(γj
1 = a | B) ·

∏n−x
k=1 Pr(γk

2 = b | B) = (1− p)
(

p
1−p ×

1−µ∗∗

µ∗∗

)x

So, conditional on taking γP = a, the principal optimally sets x = n, and the loss is:

LA(n) = (1− p)
(

p
1−p ×

1−µ∗∗

µ∗∗

)n
(4)

Suppose that the principal minimizes costs with γP = b. The expected loss is then:

LB(x) = Pr(A) ·
∏x

j=1 Pr(γj
1 = a | A) ·

∏n−x
k=1 Pr(γk

2 = b | A) = p
(

1−p
p × 1−µ∗∗

µ∗∗

)n−x

So, conditional on taking γP = b, the principal optimally sets x = 0, and the loss is:

LB(0) = p
(

1−p
p × 1−µ∗∗

µ∗∗

)n
(5)

Last, from (4) and (5): LA(n) ≶ LB(0) ⇔ (1− p)
(

p
1−p

)n
≶ p

(
1−p

p

)n
⇔ p ≶ 1/2. 2

Proposition 5 states that a principal who can choose the source of information will not

select a combination of the two types of agents in order to compensate for the different

type of errors they are likely to make. Instead, it will be optimal to choose all agents of

the same type. As a result, the systematic tendency to favor one action over others is

still present with a committee of advisors. The type of mistakes incurred will be identical

in nature to the single agent case developed before, but quantitatively smaller due to the

greater total amount of information collected. The idea is simple. Since the principal

dislikes equally both types of errors, he selects agents so as to minimize their likelihood

of committing a mistake, independently of the nature. We know from Proposition 2 that

the likelihood of providing an incorrect appraisal is inversely proportional to the distance

between the prior belief and the posterior at which the agent decides to stop collecting

evidence and recommends an action (formally, µ∗∗−p for a type-1 agent and p− (1−µ∗∗)
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for a type-2 agent). Hence, if p < 1/2, type-1 agents are relatively less likely to mislead

the principal than type-2 agents (|µ∗∗ − p| > |p − (1 − µ∗∗)|), so it is optimal to pick

only type-1 agents. The opposite is true when p > 1/2. Overall, fewer mistakes occur

as we increase the number of agents who provide an appraisal. However, the systematic

tendency to favor one decision persists. Note that the result is based on the idea that,

in order to minimize errors, the principal must encourage the acquisition of information.

This is achieved by choosing agents with highest incentives to experiment given the initial

prior. In that respect, the conclusion is similar to the one obtained in Proposition 4(i).

Again, the result has interesting implications for the examples presented before. Con-

sider a manager who can appoint a committee of agents in charge of providing independent

advice on which investment strategy to follow. Proposition 5 shows that in order to reduce

the number of mistakes, all members of the committee should have the same tastes (i.e.,

similar preferences that result in similar tendencies).11 Similarly, suppose that a judge

has to form a jury and assume that, for a given belief, all members agree on whether the

suspect should be convicted or released. The composition of the jury that minimizes mis-

takes will require all members to be of the same type, and therefore it will still exhibit a

systematic tendency to favor one alternative. This, in turn, implies that impartial verdicts

(that is, a verdict that errs on both sides with equal probability) are difficult to render

even when all members want to minimize mistakes.

5 Concluding remarks

The paper has explored a general distinction between (irrational) systematically biased

beliefs and (rational) systematically favored choices that result from the endogenous and

costly decision to acquire information. We have pointed out as our major conclusion that

actions with highest variance in payoffs across states will generally be favored, at the ex-

pense of actions with lowest variance in payoffs across states. In some applications (e.g.,
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R&D strategies by different firms or career choices), the payoffs of the different alter-

natives are likely to be endogenously determined and inversely related to the fraction of

agents who choose the same option. Adding this general equilibrium element and studying

whether this possibility increases or decreases the tendency to favor certain alternatives is

an interesting extension left for future work.

The conclusion can be of interest for the debate on rationality in decision-making.

Consider an individual who chooses between opening a business and working in a firm.

The paper argues that a rational individual will be satisfied with little information in favor

of high entrepreneurial skills before deciding to open his own business. By contrast, he will

need substantial evidence of high team spirit and little entrepreneurial ability in order to

decide to work in a firm. As a result, we will observe many more low ability entrepreneurs

who start businesses (and thus fail) than high ability ones who work for others. Since

ability is not observable (only choices are), this asymmetry in choices and failures may

incorrectly lead to the conclusion that a majority of individuals have “excessive” confidence

in their entrepreneurial skills.

At the same time, it would be absurd to pretend that our explanation can account for

all the evidence of overconfidence and optimism documented in psychology and behavioral

economics. First, because the ingredients of our model are not relevant in all settings.12

Second, because some aggregate beliefs are impossible to reconcile with statistical infer-

ence. And third, because the behavioral explanations reviewed in the introduction seem

to do a good job in many situations. Yet, we feel that adding this extra element to the

discussion can be very useful if we want to improve our understanding of the reasons and

situations in which individuals distort their choices.
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Notes

* We thank Joel Sobel, Jano Zabojnik, an editor, two anonymous referees and the

audiences at various seminars for helpful comments.

1See e.g. DeBondt and Thaler (1995) for evidence of managerial optimism and Camerer

and Lovallo (1999) for support of this hypothesis in a controlled laboratory environment.

Studies also show that optimists can drive realists out of the market (Manove, 1999), that

their presence may be socially desirable (Bernardo and Welch, 2001), and that optimistic

beliefs can maximize felicity (Brunnermeier and Parker, 2005).

2A finite horizon game ensures the existence of a unique stopping rule at each period

that can be computed by backward induction. By setting T arbitrarily large we can

determine the limiting properties of this optimal stopping rule.

3It is equivalent to increase the correlation between signal and state or to increase the

number of signals between two dates; both can be captured with the parameter θ.

4Given θ ∈ (1/2, 1), the following properties of µ(n) are immediate: (i) lim
n→−∞

µ(n) = 0,

(ii) lim
n→+∞

µ(n) = 1, and (iii) µ(n + 1) > µ(n) ∀n.

5Because some payoffs are negative, an individual with negative expected utility would

prefer to delay the outcome. This counter-intuitive possibility does not arise in our model

since, under the optimal action (a if p > 1/2 and b if p < 1/2), the expected payoff is

always non-negative. In any case, all the results and proofs immediately extend if we

add a constant k (> h) to all utilities, making every payoff positive (that is, u1(a,A) =

k + h, u1(a,B) = k − h, u1(b, B) = k + l, u1(b, A) = k − l and similarly for u2(·)).
6The paper uses related techniques to study a different issue. It analyzes a princi-

pal/agent model with incomplete contracting and determines the rents obtained by the

former due to his ability to control the flow of public information.

7This means that n∗1 → −∞, n∗∗2 → +∞ and therefore µ∗ → 0. The assumption is

by no means necessary. However, it allows us to make clear-cut comparative statics with
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only two parameters (p and µ∗∗).

8With asymmetric payoffs, one of the alternatives would have an exogenous advantage.

In particular, the belief where the individual is indifferent between actions a and b would

be p̂ 6= 1/2. The stopping rule with a cost per unit of sampling would still be symmetric,

but only with respect to the belief p̂.

9This point was first made by Carrillo and Mariotti (2000) in a model with hyperbolic

discounting agents and a costless learning technology. It has been recently exploited by

Benôıt and Dubra (2007) in a different context.

10By contrast, if individuals were rewarded as a function of the quality of the final

decision, then they would integrate the behavior of other agents in their choice to acquire

information (and, possibly, free-ride). The optimal stopping rule would then be modified

and it would not be always true that increasing the number of agents improves the quality

of the final decision.

11The result however should not be overemphasized because the analysis neglects many

important issues in the selection of committee members. For example, diversity may be

optimal when different opinions in agents with common goals are due to different sources

of information.

12Among other things, stakes have to be sufficiently small, otherwise the incentives of

individuals to become perfectly informed before choosing their optimal action will crowd-

out all other motivations (think for example of a patient deciding whether to learn from

the doctor his health state concerning a curable disease). Also, incomplete information

and costly learning have to be crucial elements at play.
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Appendix A1: Proof of Lemma 1 and Proposition 1

Type-i agent.

Date T . Denote V T
i (n) = max{xi(2µ(n)− 1); yi(1− 2µ(n))} and let:

Y t
i (n) = V t

i (n)− xi(2µ(n)− 1) and W t
i (n) = V t

i (n)− yi(1− 2µ(n)).

For t = T , we have Y T
i (n) = max{0; (xi + yi)(1 − 2µ(n))} and W T

i (n) = max{0; (xi +

yi)(2µ(n) − 1)}. Since µ(n) is increasing in n, W T
i (n) is non-decreasing and Y T

i (n) is

non-increasing in n. Besides, limn→+∞ µ(n) = 1 and limn→−∞ µ(n) = 0, so there exists

n defined by µ(n) = 1/2 such that for all n > n then τi,T = a, and for all n < n then

τi,T = b.

Date T − 1.

Case-1: n > n. V T−1
i (n) = max{xi(2µ(n) − 1); δν(n)V T

i (n + 1) + δ(1 − ν(n))V T
i (n − 1)}

and

Y T−1
i (n) = max{0,−(1− δ)xi(2µ(n)− 1) + δν(n)Y T

i (n + 1) + δ(1− ν(n))Y T
i (n− 1)}

where Y T−1
i (n) is defined on (n, +∞). Since ν(n) is increasing in n and Y T

i (n) is non-

increasing in n, we can check that the right-hand side (r.h.s.) of Y T−1
i (n) is decreasing in

n, and therefore there exists a cutoff n∗∗i,T−1 such that for all n > n∗∗i,T−1 then τi,T−1 = a,

and for all n ∈ [n, n∗∗i,T−1) then τi,T−1 = w. To solve the previous equation, the cutoff has

to be such that n∗∗i,T−1 + 1 > n and n∗∗i,T−1 − 1 < n, and therefore it is the solution of:

0 = xi · f(n∗∗i,T−1, δ)− yi · g(n∗∗i,T−1, δ)

where f(n∗∗i,T−1, δ) ≡ 2µ(n∗∗i,T−1) − 1 − δν(n∗∗i,T−1)(2µ(n∗∗i,T−1 + 1) − 1) and g(n∗∗i,T−1, δ) =

δ(1−ν(n∗∗i,T−1))(1−2µ(n∗∗i,T−1−1)). Differentiating with respect to xi, yi and δ we have:13

∂n∗∗i,T−1

∂xi

[
yi · gn(n∗∗i,T−1, δ)− xi · fn(n∗∗i,T−1, δ)

]
= f(n∗∗i,T−1, δ)

∂n∗∗i,T−1

∂yi

[
xi · fn(n∗∗i,T−1, δ)− yi · gn(n∗∗i,T−1, δ)

]
= g(n∗∗i,T−1, δ)

∂n∗∗i,T−1

∂δ

[
yi · gn(n∗∗i,T−1, δ)− xi · fn(n∗∗i,T−1, δ)

]
= xi · fδ(n∗∗i,T−1, δ)− yi · gδ(n∗∗i,T−1, δ)
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Given f(n∗∗i,T−1, δ) > 0, g(n∗∗i,T−1, δ) > 0,14 yi · gn(n∗∗i,T−1, δ) − xi · fn(n∗∗i,T−1, δ) < 0, xi ·
fδ(n∗∗i,T−1, δ)− yi · gδ(n∗∗i,T−1, δ) < 0, we finally have:

∂n∗∗i,T−1

∂xi
< 0,

∂n∗∗i,T−1

∂yi
> 0,

∂n∗∗i,T−1

∂δ
> 0.

Case-2: n 6 n. V T−1
i (n) = max{yi(1 − 2µ(n)); δν(n)V T

i (n + 1) + δ(1 − ν(n))V T
i (n − 1)}

and

W T−1
i (n) = max{0,−(1− δ)yi(1− 2µ(n)) + δν(n)W T

i (n + 1) + δ(1− ν(n))W T
i (n− 1)}

where W T−1
i (n) is defined on (−∞, n). Since ν(n) is increasing in n and W T

i (n) is non-

decreasing in n, we can check that the r.h.s. of W T−1
i (n) is increasing in n, and therefore

there exists a cutoff n∗i,T−1 such that for all n ∈ (n∗i,T−1, n] then τi,T−1 = w, and for

all n < n∗i,T−1 then τi,T−1 = b. This cutoff has to be such that n∗i,T−1 + 1 > n and

n∗i,T−1 − 1 ≤ n, so it is solution of:

0 = yi · r(n∗i,T−1, δ)− xi · s(n∗i,T−1, δ)

where r(n∗i,T−1, δ) = 1−2µ(n∗i,T−1)−δ(1−ν(n∗i,T−1))(1−2µ(n∗i,T−1−1)) and s(n∗i,T−1, δ) =

δν(n∗i,T−1)(2µ(n∗i,T−1 +1)−1). Again, differentiating with respect to xi, yi and δ we have:

∂n∗i,T−1

∂xi

[
yi · rn(n∗i,T−1, δ)− xi · sn(n∗i,T−1, δ)

]
= s(n∗i,T−1, δ)

∂n∗i,T−1

∂yi

[
xi · sn(n∗i,T−1, δ)− yi · rn(n∗i,T−1, δ)

]
= r(n∗i,T−1, δ)

∂n∗i,T−1

∂δ

[
yi · rn(n∗i,T−1, δ)− xi · sn(n∗i,T−1, δ)

]
= xi · sδ(n∗i,T−1, δ)− yi · rδ(n∗i,T−1, δ)

Given s(n∗i,T−1, δ) > 0, r(n∗i,T−1, δ) > 0, yi · rn(n∗i,T−1, δ) − xi · sn(n∗i,T−1, δ) < 0, xi ·
sδ(n∗i,T−1, δ)− yi · rδ(n∗i,T−1, δ) > 0, we finally have:

∂n∗i,T−1

∂xi
< 0,

∂n∗i,T−1

∂yi
> 0,

∂n∗i,T−1

∂δ
< 0.

The proof is completed using a simple recursive method.15

Case-1: n > n. V t−1
i (n) = max{xi(2µ(n)−1); δν(n)V t

i (n+1)+ δ(1−ν(n))V t
i (n−1)} and

Y t
i (n) = max{0,−(1− δ)xi(2µ(n)− 1) + δν(n)Y t+1

i (n + 1) + δ(1− ν(n))Y t+1
i (n− 1)}

Y t−1
i (n) = max{0,−(1− δ)xi(2µ(n)− 1) + δν(n)Y t

i (n + 1) + δ(1− ν(n))Y t
i (n− 1)}
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Suppose that the following assumptions (A1)-(A5) hold.

(A1): Y t
i (n) is non-increasing in n and there exists n∗∗i,t such that τi,t = a if n > n∗∗i,t and

τi,t = w if n ∈ [n, n∗∗i,t).

(A2): Y t
i (n) > Y t+1

i (n) and therefore n∗∗i,t > n∗∗i,t+1.

(A3): Y t
i (n, xi) 6 Y t

i (n, x′i) if xi > x′i (and therefore ∂n∗∗i,t/∂xi < 0).

(A4): Y t
i (n, yi) > Y t

i (n, y′i) if yi > y′i (and therefore ∂n∗∗i,t/∂yi > 0).

(A5): Y t
i (n, δ) > Y t

i (n, δ′) if δ > δ′ (and therefore ∂n∗∗i,t/∂δ > 0).

Given (A1), the r.h.s. of Y t−1
i (n) is decreasing in n, so Y t−1

i (n) is non-increasing in n.

Therefore, there exists a unique cutoff n∗∗i,t−1 such that for all n > n∗∗i,t−1 then τi,t−1 = a,

and for all n ∈ [n, n∗∗i,t−1) then τi,t−1 = w. Also, given (A2), the r.h.s. of Y t−1
i (n) is greater

or equal than the r.h.s. of Y t
i (n) and therefore Y t−1

i (n) > Y t
i (n). Overall, both (A1) and

(A2) hold at date t− 1. Furthermore, n∗∗i,t−1 > n∗∗i,t. Now, denote:

Y t−1
i (n, xi) = max{0,−(1−δ)xi(2µ(n)−1)+δν(n)Y t

i (n+1, xi)+δ(1−ν(n))Y t
i (n−1, xi)}

Y t−1
i (n, x′i) = max{0,−(1−δ)x′i(2µ(n)−1)+δν(n)Y t

i (n+1, x′i)+δ(1−ν(n))Y t
i (n−1, x′i)}

By (A3), if xi > x′i then Y t
i (n + 1, xi) 6 Y t

i (n + 1, x′i) and Y t
i (n − 1, h) 6 Y t

i (n − 1, x′i).

Therefore, Y t−1
i (n, h) 6 Y t−1

i (n, x′i). This means that (A3) holds at date t− 1 and, as a

consequence, that ∂n∗∗i,t−1/∂xi < 0. Using a similar reasoning, it is immediate that (A4)

and (A5) also hold at t− 1 and therefore that ∂n∗∗i,t−1/∂yi > 0 and ∂n∗∗i,t−1/∂δ > 0.

Case-2: n 6 n. V t−1
i (n)=max{yi(1− 2µ(n)); δν(n)V t

i (n + 1) + δ(1− ν(n))V t
i (n− 1)} and

W t
i (n) = max{0,−(1− δ)yi(1− 2µ(n)) + δν(n)W t+1

i (n + 1) + δ(1− ν(n))W t+1
i (n−1)}

W t−1
i (n) = max{0,−(1− δ)yi(1− 2µ(n)) + δν(n)W t

i (n + 1) + δ(1− ν(n))W t
i (n− 1)}

Suppose that the following assumptions (A1’)-(A5’) hold.

(A1’): W t
i (n) is non-decreasing in n and there exists n∗i,t such that τi,t = b if n < n∗i,t and

τi,t = w if n ∈ (n∗i,t, n].

(A2’): W t
i (n) > W t+1

i (n) and therefore n∗i,t < n∗i,t+1.

(A3’): W t
i (n, xi) 6 W t

i (n, x′i) if xi > x′i (and therefore ∂n∗i,t/∂xi < 0).

(A4’): W t
i (n, yi) > W t

i (n, y′i) if yi > y′i (and therefore ∂n∗i,t/∂yi > 0).
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(A5’): W t
i (n, δ) > W t

i (n, δ′) if δ > δ′ (and therefore ∂n∗i,t/∂δ < 0).

Given (A1’), the r.h.s. of W t−1
i (n) is increasing in n, so W t−1

i (n) is non-decreasing in

n. Therefore, there exists a unique cutoff n∗i,t−1 such that for all n < n∗i,t−1 then τi,t−1 = b,

and for all n ∈ (n∗i,t−1, n] then τi,t−1 = w. Also, given (A2’), the r.h.s. of W t−1
i (n) is

greater or equal than the r.h.s. of W t
i (n) and therefore W t−1

i (n) > W t
i (n). Overall, both

(A1’) and (A2’) hold at date t− 1. Furthermore, n∗i,t−1 < n∗i,t. Now, denote:

W t−1
i (n, xi) = max{0,−(1−δ)yi(1−2µ(n))+δν(n)W t

i (n+1, xi)+δ(1−ν(n))W t
i (n−1, xi)}

W t−1
i (n, x′i) = max{0,−(1−δ)yi(1−2µ(n))+δν(n)W t

i (n+1, x′i)+δ(1−ν(n))W t
i (n−1, x′i)}

By (A3’), if xi > x′i then W t
i (n+1, xi) 6 W t

i (n+1, x′i) and W t
i (n−1, xi) 6 W t

i (n−1, x′i).

Therefore, W t−1
i (n, xi) 6 W t−1

i (n, x′i). This means that (A3’) holds at date t − 1 and,

as a consequence, that ∂n∗i,t−1/∂xi < 0. Using a similar reasoning, it is immediate that

(A4’) and (A5’) also hold at t−1 and therefore that ∂n∗i,t−1/∂yi > 0 and ∂n∗i,t−1/∂δ < 0.

Type-1 and Type-2 agents.

Type-1 and type-2 agents are fully symmetric. At date t, there exists n∗∗1,t s.t. τ1,t = a if

n > n∗∗1,t and τ1,t = w if n ∈ [n, n∗∗1,t). There also exists n∗2,t s.t. τ2,t = b if n < n∗2,t and

τ2,t = w if n ∈ (n∗2,t, n]. Furthermore, by symmetry, n∗2,t is such that n − n∗2,t = n∗∗1,t − n,

that is µ(n∗∗1,t) = 1− µ(n∗2,t). Similarly, if at date t there exists n∗1,t s.t. τ1,t = b if n < n∗1,t

and τ1,t = w if n ∈ (n∗1,t, n], then there also exists n∗∗2,t s.t. τ2,t = a if n > n∗∗2,t and τ2,t = w if

n ∈ [n, n∗2,t). Furthermore, n∗∗2,t is such that n∗∗2,t−n = n−n∗1,t, that is µ(n∗1,t) = 1−µ(n∗∗2,t).

Note that if h = l, then for all t we have µ(n∗1,t) = 1−µ(n∗∗1,t) and µ(n∗2,t) = 1−µ(n∗∗2,t).

As a result, n∗2,t = n∗1,t < n and n∗∗2,t = n∗∗1,t > n. Also, we know that
∂n∗∗1,t

∂h < 0 and
∂n∗1,t

∂h < 0

(which, again by symmetry, implies that
∂n∗2,t

∂h > 0 and
∂n∗∗2,t

∂h > 0). Therefore, for all h > l

we have n∗1,t < n∗2,t < n < n∗∗1,t < n∗∗2,t.

Summing up, when δ < 1, h > l > 0 and T → +∞, we have n∗1 < n∗2 < n < n∗∗1 < n∗∗2

where µ(n∗∗1 ) = 1−µ(n∗2) and µ(n∗1) = 1−µ(n∗∗2 ). Moreover, ∂n∗∗1
∂h < 0, ∂n∗∗1

∂l > 0, ∂n∗∗1
∂δ > 0,

∂n∗1
∂h < 0, ∂n∗1

∂l > 0, ∂n∗1
∂δ < 0 and ∂n∗2

∂h > 0, ∂n∗2
∂l < 0, ∂n∗2

∂δ < 0, ∂n∗∗2
∂h > 0, ∂n∗∗2

∂l < 0, ∂n∗∗2
∂δ > 0.

Appendix A2: Fixed per-unit cost of sampling
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The decision at date T is the same as in Appendix A1. The rest of the proof follows

similar steps as in Appendix A1. We present only a sketch. At date T − 1, there are two

cases.

Case-1: n > n. Ṽ T−1
i (n)=max{xi(2µ(n)− 1); ν(n)Ṽ T

i (n + 1) + (1− ν(n))Ṽ T
i (n− 1)− c}

and

Ỹ T−1
i (n) = max{0, ν(n)Ỹ T

i (n + 1) + (1− ν(n))Ỹ T
i (n− 1)− c}

where Ỹ T−1
i (n) is defined on (n, +∞). The right-hand side (r.h.s.) of Ỹ T−1

i (n) is de-

creasing in n, and therefore there exists a cutoff ñ∗∗i,T−1 such that for all n > ñ∗∗i,T−1 then

τi,T−1 = a, and for all n ∈ [n, ñ∗∗i,T−1) then τi,T−1 = w. The cutoff is the solution of:

c = [xi + yi] · g̃(ñ∗∗i,T−1)

where g̃(ñ∗∗i,T−1) = (1 − ν(ñ∗∗i,T−1))(1 − 2µ(ñ∗∗i,T−1 − 1)). Note that g̃(n) is decreasing in n

for all n. Differentiating with respect to xi, yi and c we have:

∂ñ∗∗i,T−1

∂xi
> 0,

∂ñ∗∗i,T−1

∂yi
> 0,

∂ñ∗∗i,T−1

∂c
< 0.

Suppose x1 = h, y1 = l, x2 = l and y2 = h, then
∂ñ∗∗1,T−1

∂h =
∂ñ∗∗2,T−1

∂h . Then, for all h > l > 0,

we have ñ∗∗1,T−1 = ñ∗∗2,T−1.

Case-2: n 6 n. Ṽ T−1
i (n)=max{yi(1− 2µ(n)); ν(n)Ṽ T

i (n + 1) + (1− ν(n))Ṽ T
i (n− 1)− c}

and

W̃ T−1
i (n) = max{0, ν(n)W̃ T

i (n + 1) + (1− ν(n))W̃ T
i (n− 1)− c}

where W̃ T−1
i (n) is defined on (−∞, n). The r.h.s. of W̃ T−1

i (n) is increasing in n, and

therefore there exists a cutoff ñ∗i,T−1 such that for all n ∈ (ñ∗i,T−1, n] then τi,T−1 = w, and

for all n < ñ∗i,T−1 then τi,T−1 = b. The cutoff is solution of:

c = [xi + yi] · s̃(ñ∗i,T−1, δ)

where s̃(ñ∗i,T−1) = ν(ñ∗i,T−1)(2µ(ñ∗i,T−1 +1)− 1). Again, differentiating with respect to xi,

yi and c we have:
∂ñ∗i,T−1

∂xi
< 0,

∂ñ∗i,T−1

∂yi
< 0,

∂ñ∗i,T−1

∂c
> 0.
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Suppose x1 = h, y1 = l, x2 = l and y2 = h, then
∂ñ∗1,T−1

∂h =
∂ñ∗2,T−1

∂h . Then, for all

h > l > 0, we have ñ∗1,T−1 = ñ∗2,T−1.

The proof is completed using a similar recursive method as in Appendix A1.

Case-1: n > n. Ṽ t−1
i (n) = max{xi(2µ(n) − 1); ν(n)Ṽ t

i (n + 1) + (1 − ν(n))Ṽ t
i (n − 1) − c}

and

Ỹ t
i (n) = max{0, ν(n)Ỹ t+1

i (n + 1) + (1− ν(n))Ỹ t+1
i (n− 1)− c}

Ỹ t−1
i (n) = max{0, ν(n)Ỹ t

i (n + 1) + (1− ν(n))Ỹ t
i (n− 1)− c}

Suppose that the following assumptions (A1)-(A6) hold.

(A1): Ỹ t
i (n) is non-increasing in n and there exists ñ∗∗i,t such that τi,t = a if n > ñ∗∗i,t and

τi,t = w if n ∈ [n, ñ∗∗i,t).

(A2): Ỹ t
i (n) > Ỹ t+1

i (n) and therefore ñ∗∗i,t > ñ∗∗i,t+1.

(A3): Ỹ t
i (n, xi) > Ỹ t

i (n, x′i) if xi > x′i (and therefore ∂ñ∗∗i,t/∂xi > 0).

(A4): Ỹ t
i (n, yi) > Ỹ t

i (n, y′i) if yi > y′i (and therefore ∂ñ∗∗i,t/∂yi > 0).

(A5): Ỹ t
i (n, c) 6 Ỹ t

i (n, c′) if c > c′ (and therefore ∂ñ∗∗i,t/∂c < 0).

(A6): Ỹ t
1 (n) = Ỹ t

2 (n) when x1 = h, y1 = l, x2 = l and y2 = h (and therefore ñ∗∗1,t = ñ∗∗2,t).

Given (A1), the r.h.s. of Ỹ t−1
i (n) is decreasing in n, so Ỹ t−1

i (n) is non-increasing in n.

Therefore, there exists a unique cutoff ñ∗∗i,t−1 such that for all n > ñ∗∗i,t−1 then τi,t−1 = a,

and for all n ∈ [n, ñ∗∗i,t−1) then τi,t−1 = w. Also, given (A2), the r.h.s. of Y t−1
i (n) is greater

or equal than the r.h.s. of Ỹ t
i (n) and therefore Ỹ t−1

i (n) > Ỹ t
i (n). Overall, both (A1) and

(A2) hold at date t− 1. Furthermore, ñ∗∗i,t−1 > ñ∗∗i,t. Now, denote:

Ỹ t−1
i (n, xi) = max{0, ν(n)Ỹ t

i (n + 1, xi) + (1− ν(n))Ỹ t
i (n− 1, xi)− c}

Ỹ t−1
i (n, x′i) = max{0, ν(n)Ỹ t

i (n + 1, x′i) + (1− ν(n))Ỹ t
i (n− 1, x′i)− c}

By (A3), if xi > x′i then Ỹ t
i (n + 1, xi) > Ỹ t

i (n + 1, x′i) and Ỹ t
i (n − 1, h) > Ỹ t

i (n − 1, x′i).

Therefore, Ỹ t−1
i (n, h) > Ỹ t−1

i (n, x′i). This means that (A3) holds at date t− 1 and, as a

consequence, that ∂ñ∗∗i,t−1/∂xi < 0. Using a similar reasoning, it is immediate that (A4)

and (A5) also hold at t− 1 and therefore that ∂ñ∗∗i,t−1/∂yi > 0 and ∂ñ∗∗i,t−1/∂c < 0. Last,

given (A6), Ỹ t
1 (n) = Ỹ t

2 (n) and ñ∗∗1,t−1 = ñ∗∗2,t−1.
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Case-2: n 6 n. Ṽ t−1
i (n)=max{yi(1−2µ(n)); ν(n)Ṽ t

i (n+1)+(1−ν(n))Ṽ t
i (n−1)− c} and

W̃ t
i (n) = max{0, ν(n)W̃ t+1

i (n + 1) + (1− ν(n))W̃ t+1
i (n−1)− c}

W̃ t−1
i (n) = max{0, ν(n)W̃ t

i (n + 1) + (1− ν(n))W̃ t
i (n− 1)− c}

Suppose that the following assumptions (A1’)-(A6’) hold.

(A1’): W̃ t
i (n) is non-decreasing in n and there exists ñ∗i,t such that τi,t = b if n < ñ∗i,t and

τi,t = w if n ∈ (ñ∗i,t, n].

(A2’): W̃ t
i (n) > W̃ t+1

i (n) and therefore ñ∗i,t < ñ∗i,t+1.

(A3’): W̃ t
i (n, xi) 6 W̃ t

i (n, x′i) if xi > x′i (and therefore ∂ñ∗i,t/∂xi < 0).

(A4’): W̃ t
i (n, yi) 6 W̃ t

i (n, y′i) if yi > y′i (and therefore ∂ñ∗i,t/∂yi < 0).

(A5’): W̃ t
i (n, c) > W̃ t

i (n, c′) if c > c′ (and therefore ∂ñ∗i,t/∂c > 0).

(A6’): W̃ t
1(n) = W̃ t

2(n) when x1 = h, y1 = l, x2 = l and y2 = h (and therefore ñ∗1,t = ñ∗2,t).

Given (A1’), the r.h.s. of W̃ t−1
i (n) is increasing in n, so W̃ t−1

i (n) is non-decreasing in

n. Therefore, there exists a unique cutoff ñ∗i,t−1 such that for all n < ñ∗i,t−1 then τi,t−1 = b,

and for all n ∈ (ñ∗i,t−1, n] then τi,t−1 = w. Also, given (A2’), the r.h.s. of W̃ t−1
i (n) is

greater or equal than the r.h.s. of W̃ t
i (n) and therefore W̃ t−1

i (n) > W̃ t
i (n). Overall, both

(A1’) and (A2’) hold at date t− 1. Furthermore, ñ∗i,t−1 < ñ∗i,t. Now, denote:

W̃ t−1
i (n, xi) = max{0, ν(n)W̃ t

i (n + 1, xi) + (1− ν(n))W̃ t
i (n− 1, xi)− c}

W̃ t−1
i (n, x′i) = max{0, ν(n)W̃ t

i (n + 1, x′i) + (1− ν(n))W̃ t
i (n− 1, x′i)− c}

By (A3’), if xi > x′i then W̃ t
i (n+1, xi) 6 W̃ t

i (n+1, x′i) and W̃ t
i (n−1, xi) 6 W̃ t

i (n−1, x′i).

Therefore, W̃ t−1
i (n, xi) 6 W̃ t−1

i (n, x′i). This means that (A3’) holds at date t − 1 and,

as a consequence, that ∂ñ∗i,t−1/∂xi < 0. Using a similar reasoning, it is immediate that

(A4’) and (A5’) also hold at t−1 and therefore that ∂ñ∗i,t−1/∂yi < 0 and ∂ñ∗i,t−1/∂c > 0.

Last, given (A6’), W̃ t
1(n) = W̃ t

2(n) and ñ∗1,t−1 = ñ∗2,t−1.
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